Project description:Stable knockdown of NET1, a RhoGEF, was achieved in AGS Gastric Cancer cells. This gene is known to be overexpressed in the disease. Knockdown was achieved using lentiviral shRNA particles. Gene expression was compared between knockdown and scrambled shRNA treated control cells. Cells were treated with and without LPA, a known activator of RhoA. Three distinct cell lines were used in this study (all AGS cells); (i) Non Target cell (NT) stably expressing non targetting shRNA (ii) 63 and (iii) 65; the latter two are stable NET1 knockdown cells and are seperatly transduced with separate NET1 targetting shRNA particles. Cells were treated with and without 10microM LPA for 4 hr. Experimental replicates were performed for each treatment (A & B), RNA was prepared from each and seperatly hybridised to U133A arrays.
Project description:To identify possible novel targets for the treatment of plexiform neurofibroma formation through a synthetic lethal shRNA library screen in the tumorigenic cell of origin, Schwann cells.
Project description:This SuperSeries is composed of the following subset Series:; GSE10232: CTDG in PMA-activated Jurkat cells; GSE10233: CTDG in PMA-activated MM6 cells; GSE10234: CTDG in LPS-activated MM6 cells; GSE10737: CTDG in non-activated Jurkat cells; GSE10738: CTDG in non-activated MM6 cells; GSE10739: LPS and PMA response in parental MM6 cells Experiment Overall Design: Refer to individual Series
Project description:Developmental checkpoints in stem/progenitor cells are critical to the determination, commitment and differentiation into distinct lineages. Cancer cells often retain expression of lineage-specific checkpoint proteins, but their potential impact in cancer remains elusive. T lymphocytes mature in the thymus following a highly orchestrated developmental process that entails the successive rearrangements and expression of T-cell receptor (TCR) genes. Low affinity recognition of self-peptide/MHC complexes (self-pMHC) presented by thymic epithelial cells by the TCR of CD4+CD8+ (DP) cortical thymocytes transduces positive selection signals that ultimately shape the developing T cell repertoire. DP thymocytes not receiving these signals die by lack of stimulation whereas those that recognize self-pMHC with high affinity undergo TCR-mediated apoptosis and negative selection. In T-cell acute lymphoblastic leukaemia (T-ALL), leukaemic transformation of maturating thymocytes results from the acquisition of multiple genetic and epigenetic alterations in oncogenes and tumour suppressor genes, that disrupt the normal regulatory circuits and drive clonal expansion of differentiation-arrested lymphoblasts. We show here that TCR triggering by negatively-selecting self-pMHC prevented T-ALL development and leukaemia maintenance in mice. Induction of TCR signalling by high affinity self-pMHC or treatment with monoclonal antibodies to the CD3 signalling chain (anti-CD3) caused massive leukaemic cell death and a gene expression program resembling that of thymocyte negative selection. Importantly, anti-CD3 treatment hampered leukaemogenesis in mice transplanted with either mouse or patient-derived T-ALLs. These data provide a rationale for targeted therapy based on anti-CD3 treatment of T-ALL patients and demonstrate that endogenous developmental checkpoint proteins are amenable to therapeutic intervention in cancer cells. Gene expression data from four culture conditions was performed for the following cells: ALL-SIL-TCRα/β-GFP co-cultured on OP9-DL1 for 48 h, ALL-SIL-TCRα/β-GFP without co-culture, ALL-SIL cells transduced with TLX shRNA (sh-TLX), and ALL-SIL transduced with sh-control vectors. All conditions are performed in two replicates.
Project description:Primary kidney PTECs gradually became senescesince day 16, but SETD2 depletion prevented PTECs from senescence and maintained their proliferation beyond their limited dividing capacity. Transcriptional profiling of human PTECs, with comparing of non-senescent PTECs (PTECs-day 6), senescent PTECs (PTECs-day16), and SETD2 depleted PTECs at day 25 (SETD2 KD-PTECs-day 25). Three PTECs of different origins were transduced with shRNA constructs against SETD2 (sh1 or sh2), or with a non-targeting sequence. Untreated and NT-shRNA transduced samples were harvest at day 6 and day 16 respectively, SETD2-KD shRNA transduced PTECs were harvest at day 25.
Project description:Cyclin T1-dependent genes in activated Jurkat cells. HIV-1 is dependent upon cellular co-factors to mediate its replication cycle in CD4+ T cells and macrophages, the two major cell types infected by the virus in vivo. One critical co-factor is Cyclin T1, a subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is targeted directly by the viral Tat protein to activate proviral transcription. Cyclin T1 is up-regulated when resting CD4+ T cells are activated and during macrophage differentiation or activation, conditions that are also necessary for high levels of HIV-1 replication. Because Cyclin T1 is a subunit of a transcription factor, the up-regulation of Cyclin T1 in these cells results in the induction of cellular genes, some of which might be HIV-1 co-factors. Using shRNA depletions of Cyclin T1 and transcriptional profiling, we identified 54 cellular mRNAs that are Cyclin T1-dependent for their induction in activated CD4+ T cells and during macrophage differentiation and activation. The promoters for these Cyclin T1-dependent genes (CTDGs) are over-represented in two transcription factor binding sites, SREBP1 and ARP1. Notably, 10 of these CTDGs have been reported to be involved in HIV-1 replication, a significant over-representation of such genes when compared to randomly generated lists of 54 genes (p value < 0.00021). SiRNA depletions of two CTDGs identified here, CDK11 and Casein kinase1gamma1, suggest that these genes are also involved in HIV-1 replication. It is therefore likely that the 54 CTDGs identified here include novel HIV-1 co-factors. The presence of CTDGs in the protein space that was available for HIV-1 to sample during its evolution and acquisition of Tat function may provide an explanation for why CTDGs are enriched in viral co-factors. Experiment Overall Design: Using shRNA knockdown of cyclin T1, cyclin T1-dependent genes were identified in activated Jurkat cells.
Project description:Enzymes catalyzing the methylation of the 5-position of cytosine (mC) have essential roles in regulating gene expression, genome stability, and maintaining cellular identity. Recently Tet1, which is highly expressed in embryonic stem (ES) cells, was found to oxidize the methyl group of mC converting it to 5-hydroxymethyl cytosine (hmC)3. Here, we present the genome-wide mapping of Tet1 and hmC in mouse ES cells. We show that Tet1 binds throughout the genome with the majority of binding sites located at transcription start sites (TSSs) and within genes. Similar to Tet1 and mC, also hmC is found throughout the genome and in particular in gene bodies. However, in contrast to mC, hmC is enriched at TSSs. Tet1 and hmC are associated with genes critical for the control of development and differentiation, which become methylated during differentiation. Surprisingly our results also suggest that Tet1 has a role in transcriptional repression. We show that Tet1 binds to a significant proportion of target genes that are positive for the Polycomb repressive histone mark H3K27me3, and that downregulation of Tet1 also leads to increased expression of a group of Tet1 target genes. In agreement with a potential repressive function, we show that Tet1 associates with the Sin3A co-repressor complex, which also co-localises with Tet1 throughout the genome. We propose that Tet1 fulfils dual functions in transcriptional regulation, where it fine-tunes DNA methylation and associates with the Sin3A co-repressor complex to prevent transcriptional activation. [GSM611209-GSM611217] Control (shScr) or two different Tet1 knockdown (shTet1#4 or shTet1#5) mouse ES cells were used. Each experiment was performed in triplicates. [GSM675884-GSM675889] Control (shScr) or Sin3A knockdown (shSin3A) mouse ES cells were used.Each experiment was performed in triplicates.
Project description:Cell-specific gene expression is achieved by a combination of mechanisms including transcriptional and post-transcriptional regulation. The transcription factor Nkx2-1, essential for lung cell differentiation, mainly acts in transcriptional activation but can directly or indirectly repress gene expression. microRNAs are a class of small non-coding RNA that control one of the major mechanisms of gene repression. To identify miRNAs regulated by Nkx2-1 that may mediate its repressing effects, we knocked-down Nkx2-1 in mouse lung epithelial cell lines and systematically identified targets by genome-wide miR and mRNA expression analyses. Nkx2-1 controls expression of miRs known to contribute to lung cell differentiation in development and disease and others not previously described. Amongst the significantly altered miRs, the mir-106a-363 cluster, miR-1195, miR-378, and miR-346 are directly correlated with the levels of Nkx2-1, whereas miR-200c/b, miR-221, and miR- 222 are inversely correlated. These miRNAs are expressed in embryonic lung at day E11.5, and/or E19.5 determined by in-situ hybridization. Expression of predicted targets of mir-1195, mir-346 and miR-200c and mir-221/222 were evaluated by mRNA expression microarrays in Nkx2-1 knockdown cells identifying those anti-correlated to the corresponding miRNA expression. Genes regulated by mir-1195, Cyp2s1 and Map3k2, by mir-346, Klf6, and miR-200c, Myb, Nfib, and Six1, were validated by qRT-PCR. Inhibition of mir-1195 confirms the inverse correlation of this miRNA with its putative targets Cyp2s1 and Map3k2. This miRNA-mRNA expression analysis identifies potential paths of Nkx2-1 mediated gene repression, and contributes to the understanding of gene regulation in lung epithelial differentiation and development. Nkx2-1 mRNA was knocked down in lung epithelial cells using a lentivirus expressing a shRNA targeting Nkx2-1 (n=3) and compared to empty vector controls (n=3).
Project description:Engineering clinically relevant cells in vitro holds promise for regenerative medicine, but most protocols fail to faithfully recapitulate target cell properties. To address this, we developed CellNet, a network biology platform that determines whether engineered cells are equivalent to their target tissues, diagnoses aberrant gene regulatory networks, and prioritizes candidate transcriptional regulators to enhance engineered conversions. Using CellNet, we improved B cell to macrophage conversion, transcriptionally and functionally, by knocking down predicted B cell regulators. Analyzing conversion of fibroblasts to induced hepatocytes (iHeps), CellNet revealed an unexpected intestinal program regulated by the master regulator Cdx2. We observed functional engraftment of mouse colon by iHeps, thereby establishing their broader potential as endoderm progenitors and demonstrating direct conversion of fibroblasts into intestinal epithelium. Our studies illustrate how CellNet can be employed to improve direct conversion and to uncover unappreciated properties of engineered cells. 15 samples
Project description:In the activated B-cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), the most frequent gain-of-function mutations target MyD88, a signaling adapter for Tolllike receptors (TLRs). The most prevalent oncogenic mutant, MyD88 L265P, occurs in 29% of cases and is the most active in engaging the NF-kappaB pathway. Here we show that MyD88 mutants do not function autonomously, but rather require TLR7, TLR9, and to a lesser extent, TLR4 to promote the survival of ABC DLBCL cells. Unlike wild type MyD88, MyD88 mutants associate constitutively with TLR7 and TLR9 in ABC DLBCL cells. Like ligand-induced TLR7/9 signaling in normal immune cells, the survival of ABC DLBCL cell lines depends upon translocation of TLR7 and TLR9 to acidic endolysosomes, where proteolytic processing of their ligand binding ectodomains is required for their oncogenic signaling. ABC DLBCL viability also depends upon CD14, a co-receptor for TLR7 and TLR9 that promotes engagement of nucleic acid ligands by these receptors. Point mutations in the TLR7 or TLR9 ectodomains that abrogate ligand binding and/or signaling were incapable of sustaining ABC DLBCL survival. An inhibitory oligonucleotide that suppresses TLR9 responses in normal B cells blocked NF-kappaB signaling and survival of ABC DLBCL lines. Together, these data suggest that an endogenous TLR ligand may play a pathogenic role in ABC DLBCL and provide a rationale for targeting TLR signaling to improve therapy of this aggressive lymphoma. Gene expression was analyzed using Agilent human 2-color 4X44K oligo gene expression arrays. Cell line, TMD8 ABC-DLBCL, was infected with control (shControl, Cy3), shLTR7 (Cy5) or shLTR9 (Cy5) and changes in gene expression were monitored on day 1 and day 2 after induction of the shRNA with doxycycline, co-hybridizing control and experimental samples (Cy3+Cy5), for a total of 4 arrays.