MRNA expression profiling of mitochondrial subunits in subjects with Parkinson’s disease
Ontology highlight
ABSTRACT: Introduction: Parkinson's disease (PD), typically developing between the ages of 55 and 65 years, is a common neurodegenerative disorder caused by a progressive loss of dopaminergic neurons due to the accumulation of α-synuclein in the substantia nigra. Mitochondria are known to play a key role in cell respiratory function and bioenergetic. Indeed, mitochondrial dysfunction causes an insufficient energy production required to satisfy the needs of several organs, especially the nervous system. Material and methods: The present study explored the mRNA expression of mitochondrial DNA (mtDNA) encoded respiratory chain (RC) subunits in PD patients by using the next generation sequencing analysis (NGS) and the quantitative real-time PCR (qRT-PCR) assay for the confirmation of the NGS results. Results: All tested mitochondrial RC subunits was significantly over-expressed in subjects with PD compared to normal controls . In qRT-PCR the mean expression of all mitochondrial subunits had an expression level of at least 7 times compared to controls. Conclusion: The over-expression of mitochondrial subunits in PD subjects might be secondary to a degeneration-related alteration of the mitochondrial structure or dynamics or to the occurrence of a compensatory mechanism. The study of specific mRNA by peripheral blood mononuclear cells (PBMCs) may provide a better diagnostic frame to early detect PD cases.
INSTRUMENT(S): NextSeq 500
ORGANISM(S): Homo sapiens
SUBMITTER: Genomix4Life Genomix4Life
PROVIDER: E-MTAB-9950 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA