Project description:A major challenge in biology is to determine how evolutionarily novel characters originate, however, mechanistic explanations for the origin of novelties are almost completely unknown. The evolution of mammalianM-BM- pregnancy is an excellent system in which to study the origin of novelties because extant mammals preserve major stages in the transition from egg-laying to live-birth. To determine the molecular bases of this transition we characterized the pregnant/gravid uterine transcriptome from tetrapods, including species in the three major mammalian lineages, and used ancestral transcriptome reconstruction to trace the evolutionary history of uterine gene expression. We show that thousands of genes evolved endometrial expression during the origins of mammalian pregnancy, including numerous genes that mediate maternal-fetal communication and immunotolerance.Furthermore we show that thousands of regulatory elements active inM-BM- decidualized human endometrial stromal cellsM-BM- are derived from ancient mammalian transposable elements which provided binding sites for transcription factors that mediate decidualization and endometrial cell-type identity.M-BM- Our results indicate that one of the defining mammalian novelties evolved via domestication of ancient mammalian transposable elements into hormone-responsive regulatory elements throughout the genome. Examination of histone modification and DNAse hypersensitivity in decidualized dESC
Project description:Single-cell RNA-sequencing (10X) data from a three-dimensional cell-engineered system for human implantation that closely recapitulates the cytoarchitecture and physiology of the receptive human endometrium
Project description:The endometrium contains a distinct population of immune cells consisting of 70% natural killer (NK) cells that undergo cyclic changes during the menstrual cycle. However, how these uterine NK (uNK) cells interact with uterine stromal cells (SC) remains unclear. We therefore investigated the paracrine effect of medium conditioned by uNK cells on the gene expression profile of endometrial SC in-vitro using a cDNA Microarray. Our results, verified by real-time PCR and ELISA, reveal that soluble factors from uNK cells substantially alter endometrial SC gene expression. The largest group of up-regulated genes found were chemokines and cytokines, including IL-15 and IL-15Rα. The latter could produce a niche for uNK cells allowing proliferation within and recruitment into the uterus, as seen in bone marrow. In addition, the most abundantly up-regulated genes, including IL-8, CCL8 and CXCL1 have also been shown to be stimulated by contact of SC with trophoblast, suggesting that uNK cells work synergistically to support the initial trophoblast migration during implantation. Overall this study demonstrates for the first time the paracrine communication between uNK cells and uterine SC, and adds to the understanding of how the uterine immune system contributes to the changes seen within the cycling endometrium. Keywords: Response of endometrial stromal cells to uNK conditioned medium This study was designed to identify the response of non-decidualised stromal cells from the endometrium, to soluble factors secreted by uterine NK cells. Endometrial stromal cells were isolated from 7 patients and treated with control medium or medium conditioned by uterine Nk cells. THE 'REF' COLUMN ON EACH ARRAY IS THE SIGNAL PRODUCED BY A COMMON REFERNCE RNA SAMPLE THAT WAS LABELLED AS A SINGLE BATCH SAMPLE AND HYBRIDISED TO ALL THE ARRAYS- IT IS A 'COMMON REFERENCE'. THE 'TEST' SAMPLE COMPRISES EACH INDIVIDUAL SAMPLE OF CELLS TREATED AS DESCRIBED IN THE SERIES SUBMISSION. FOR EXAMPLE; SAMPLE Y1 (gsm2435820) IS RNA FROM PATIENT 1 TREATED WITH CONTROL MEDIUM, SAMPLE G1 (GSM245371) IS RNA FROM PATIENT 1 TREATED WITH NK CONDITIONED MEDIUM THESE TWO SAMPLES THEREFORE FORM A PAIR- IE CELLS FROM THE SAME PATIENT TREATED WITH CONTROL OR NK-CONDITIONED MIDIUM. Y2,G2 ARE FROM PATIENT 2, ETC
Project description:To clarify mineralcorticoid receptor and glucocorticoid receptor-dependent gene networks in decidualizing human endometrial stromal cells. Genome-wide microarray analysis was performed on primary cultures established from 4 different patients. Stromal cell cultures were subjected to either GR or MR siRNA knockdown or control non-targeting siRNA then decidualized for four days before harvesting and RNA extraction for microarray analysis.
Project description:Embryos secrete preimplantation factor (PIF), a peptide present in maternal circulation during viable pregnancy. We compared downstream synthetic PIF effect on gene expression in non-pregnant Human Endometrial Stromal Cell (HESC) and First Trimester Decidual cell (FTDC) culture to mimic the maternal intrauterine environment during embryo implantation and trophoblast invasion. Cells were cultured in triplicate with and without synthetic PIF for 24 hours. Cultured cells were then pooled for chip analysis. Altered gene expression relative to controls was assessed by Affymetrix microarray
Project description:Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the Aryl Hydrocarbon Receptor (AHR) in a structurally-dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at a concentration that induces developmental malformations by 120 hours post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burden was analyzed at these time points using GC-MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the smallest number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure and may provide a path for unraveling the toxicity of complex PAH mixtures. Gene expression was measured in zebrafish embryos after exposure to PAHs. Embryos were batch-exposed in groups of 40 to 25 μM BAA, 25 μM DBT, 25 μM PYR or 1% DMSO vehicle control starting at 6 hpf and collected at 24 or 48 hpf. Four independent biological replicates were prepared for each treatment. The reference was a pool of zebrafish embryos exposed to DMSO control until 24 and 48 hpf.
Project description:In this study we use a combination of proteomics Label-Free quantification methods to monitor protein expression changes over a time course of more than 20 hours of embryo development in Drosophila melanogaster.
Project description:Our previous studies have shown that bone morphogenetic protein 2 (BMP2), a morphogen belonging to the TGFM-NM-2 superfamily, is markedly induced in human primary endometrial stromal cells (HESC) as they undergo differentiation in response to steroid hormones and cAMP. WNT4 is a downstream target of BMP2 regulation in these cells. To identify the common downstream targets of BMP2 and WNT4 in human endometrial stromal cells, we performed gene expression profling of human ensometrial stromal cell transduced with BMP2 or WNT4 adenovirus. Gene expression profiling revealed that FOXO1, a forkhead family transcription factor and a known regulator of HESC differentiation, is a common downstream mediator of both BMP2 and WNT4 signaling. These studies uncovered a linear pathway involving BMP2, WNT4, and FOXO1 that operates in human endometrium to critically control decidualization. Human endometrial stromal cells were transduced with recombinant adenovirus expressing BMP2, WNT4, or a negative control GFP at MOI 50:1 in 2 ml of culture medium. After transduction for 24 h, the viral particles were removed and the cells were treated with E+P for 3 days to induce decidualization (n=3 for each treatment), pooled total RNA from these cells was then hybridized to high density affymetrix microarrays according to the Affymetrix protocol (Human Genome HG-U133 A2.0 Array) .
Project description:Progesterone regulated genes in the endometrial stromal compartment were studied in proven fertile women using laser dissection capture microscopy followed by microarray. Endometrial biopsies were obtained from women before (control group, n=9) and after (study group, n=9) treatment with mifepristone. Stromal cells were isolated by Laser-capture microdissection and RNA was extracted. The gene expression was analyzed by microarray and reconfirmed by real-time PCR.