Unknown

Dataset Information

0

Electronic Structure Calculations of Static Hyper(Polarizabilities) of Substrate-Supported Group-IV and -V Elemental Monolayers.


ABSTRACT: The substrate-induced effects on the polarizability (α) and first dipole hyperpolarizability (β) of group-IV (i.e., graphene, silicene, germanene, stanene) and group-V (i.e., phosphorene, arsenene, antimonene, and bismuthene) elemental monolayer nanoflakes are investigated. Density functional theory calculations show that these monolayers are bound with varying degrees of interaction strength with the Ag(111) substrate surface. Calculated dipole moment and β values are zero for the centrosymmetric configurations of the pristine elemental monolayers. On the other hand, substrate-induced changes in the electronic densities at the interface lead to substantially enhanced values of β, making these materials attractive for applications in the next-generation photonic technologies at the nanoscale.

SUBMITTER: Kaur S 

PROVIDER: S-EPMC10018704 | biostudies-literature | 2023 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Electronic Structure Calculations of Static Hyper(Polarizabilities) of Substrate-Supported Group-IV and -V Elemental Monolayers.

Kaur Sumandeep S   Pandey Ravindra R   Karna Shashi P SP  

ACS omega 20230228 10


The substrate-induced effects on the polarizability (α) and first dipole hyperpolarizability (β) of group-IV (i.e., graphene, silicene, germanene, stanene) and group-V (i.e., phosphorene, arsenene, antimonene, and bismuthene) elemental monolayer nanoflakes are investigated. Density functional theory calculations show that these monolayers are bound with varying degrees of interaction strength with the Ag(111) substrate surface. Calculated dipole moment and β values are zero for the centrosymmetr  ...[more]

Similar Datasets

| S-EPMC8340093 | biostudies-literature
| S-EPMC11822503 | biostudies-literature
| S-EPMC6700155 | biostudies-literature
| S-EPMC7467643 | biostudies-literature
| S-EPMC3478638 | biostudies-literature
| S-EPMC11468557 | biostudies-literature
| S-EPMC10858257 | biostudies-literature
| S-EPMC9056272 | biostudies-literature
| S-EPMC7486411 | biostudies-literature
| S-EPMC4632183 | biostudies-literature