Unknown

Dataset Information

0

Glioblastoma-Derived Small Extracellular Vesicles: Nanoparticles for Glioma Treatment.


ABSTRACT: Glioblastoma (GBM), characterized by fast growth and invasion into adjacent tissue, is the most aggressive cancer of brain origin. Current protocols, which include cytotoxic chemotherapeutic agents, effectively treat localized disease; however, these aggressive therapies present side effects due to the high doses administered. Therefore, more efficient ways of drug delivery have been studied to reduce the therapeutic exposure of the patients. We have isolated and fully characterized small extracellular vesicles (EVs) from seven patient-derived GBM cell lines. After loading them with two different drugs, Temozolomide (TMZ) and EPZ015666, we observed a reduction in the total amount of drugs needed to trigger an effect on tumor cells. Moreover, we observed that GBM-derived small EVs, although with lower target specificity, can induce an effect on pancreatic cancer cell death. These results suggest that GBM-derived small EVs represent a promising drug delivery tool for further preclinical studies and potentially for the clinical development of GBM treatments.

SUBMITTER: Araujo-Abad S 

PROVIDER: S-EPMC10054028 | biostudies-literature | 2023 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Glioblastoma-Derived Small Extracellular Vesicles: Nanoparticles for Glioma Treatment.

Araujo-Abad Salomé S   Manresa-Manresa Antonio A   Rodríguez-Cañas Enrique E   Fuentes-Baile María M   García-Morales Pilar P   Mallavia Ricardo R   Saceda Miguel M   de Juan Romero Camino C  

International journal of molecular sciences 20230321 6


Glioblastoma (GBM), characterized by fast growth and invasion into adjacent tissue, is the most aggressive cancer of brain origin. Current protocols, which include cytotoxic chemotherapeutic agents, effectively treat localized disease; however, these aggressive therapies present side effects due to the high doses administered. Therefore, more efficient ways of drug delivery have been studied to reduce the therapeutic exposure of the patients. We have isolated and fully characterized small extrac  ...[more]

Similar Datasets

| S-EPMC9688032 | biostudies-literature
| S-EPMC4799676 | biostudies-literature
| S-EPMC7778586 | biostudies-literature
| S-EPMC10952188 | biostudies-literature
| S-EPMC8804898 | biostudies-literature
| S-EPMC7139767 | biostudies-literature
| S-EPMC5842038 | biostudies-literature
| S-EPMC7142482 | biostudies-literature
| S-EPMC9145309 | biostudies-literature
| S-EPMC7424213 | biostudies-literature