Unknown

Dataset Information

0

Implication of FOXD2 dysfunction in syndromic congenital anomalies of the kidney and urinary tract (CAKUT).


ABSTRACT:

Background

Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below 30 years of age. Many monogenic forms have been discovered mainly due to comprehensive genetic testing like exome sequencing (ES). However, disease-causing variants in known disease-associated genes still only explain a proportion of cases. Aim of this study was to unravel the underlying molecular mechanism of syndromic CAKUT in two multiplex families with presumed autosomal recessive inheritance.

Methods and results

ES in the index individuals revealed two different rare homozygous variants in FOXD2, a transcription factor not previously implicated in CAKUT in humans: a frameshift in family 1 and a missense variant in family 2 with family segregation patterns consistent with autosomal-recessive inheritance. CRISPR/Cas9-derived Foxd2 knock-out (KO) mice presented with bilateral dilated renal pelvis accompanied by renal papilla atrophy while extrarenal features included mandibular, ophthalmologic, and behavioral anomalies, recapitulating the phenotype of humans with FOXD2 dysfunction. To study the pathomechanism of FOXD2-dysfunction-mediated developmental renal defects, in a complementary approach, we generated CRISPR/Cas9-mediated KO of Foxd2 in ureteric-bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important in renal/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a cell identity shift towards a stromal cell identity. Histology of Foxd2 KO mouse kidneys confirmed increased fibrosis. Further, GWAS data (genome-wide association studies) suggests that FOXD2 could play a role for maintenance of podocyte integrity during adulthood.

Conclusions

In summary, our data implicate that FOXD2 dysfunction is a very rare cause of autosomal recessive syndromic CAKUT and suggest disturbances of the PAX2-WNT4 cell signaling axis contribute to this phenotype.

SUBMITTER: Riedhammer KM 

PROVIDER: S-EPMC10055578 | biostudies-literature | 2023 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Implication of <i>FOXD2</i> dysfunction in syndromic congenital anomalies of the kidney and urinary tract (CAKUT).

Riedhammer Korbinian M KM   Nguyen Thanh-Minh T TT   Koşukcu Can C   Calzada-Wack Julia J   Li Yong Y   Saygılı Seha S   Wimmers Vera V   Kim Gwang-Jin GJ   Chrysanthou Marialena M   Bakey Zeineb Z   Kraiger Markus M   Sanz-Moreno Adrián A   Amarie Oana V OV   Rathkolb Birgit B   Klein-Rodewald Tanja T   Garrett Lillian L   Hölter Sabine M SM   Seisenberger Claudia C   Haug Stefan S   Marschall Susan S   Wurst Wolfgang W   Fuchs Helmut H   Gailus-Durner Valerie V   Wuttke Matthias M   de Angelis Martin Hrabe MH   Ćomić Jasmina J   Doğan Özlem Akgün ÖA   Özlük Yasemin Y   Taşdemir Mehmet M   Ağbaş Ayşe A   Canpolat Nur N   Ćalışkan Salim S   Weber Ruthild R   Bergmann Carsten C   Jeanpierre Cecile C   Saunier Sophie S   Lim Tze Y TY   Hildebrandt Friedhelm F   Alhaddad Bader B   Wu Kaman K   Antony Dinu D   Matschkal Julia J   Schaaf Christian C   Renders Lutz L   Schmaderer Christoph C   Meitinger Thomas T   Heemann Uwe U   Köttgen Anna A   Arnold Sebastian S   Ozaltin Fatih F   Schmidts Miriam M   Hoefele Julia J  

medRxiv : the preprint server for health sciences 20230322


<h4>Background</h4>Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below 30 years of age. Many monogenic forms have been discovered mainly due to comprehensive genetic testing like exome sequencing (ES). However, disease-causing variants in known disease-associated genes still only explain a proportion of cases. Aim of this study was to unravel the underlying molecular mechanism of syndromic CAKUT in two multiplex families with pr  ...[more]

Similar Datasets

| S-EPMC10957342 | biostudies-literature
| S-EPMC4266037 | biostudies-literature
| S-EPMC10728251 | biostudies-literature
| S-EPMC7904997 | biostudies-literature
| S-EPMC7272185 | biostudies-literature
| S-EPMC11783626 | biostudies-literature
| S-EPMC4676405 | biostudies-literature
| S-EPMC10250376 | biostudies-literature
| S-EPMC8071628 | biostudies-literature
| S-EPMC10010616 | biostudies-literature