Project description:Spinocerebellar ataxia type 10 (SCA10; OMIM #603516) is an autosomal dominant cerebellar ataxia with variably associated extracerebellar signs.(1,2) SCA10 is caused by an expanded noncoding pentanucleotide repeat in ATXN10, which normally ranges from 9 to 32 repeats(3,4); pathogenic alleles have as many as 4,500 repeats.(4) To date, SCA10 has been found exclusively on American continents. In this report, we describe a Chinese Han family with autosomal dominant cerebellar ataxia caused by an SCA10 expansion.
Project description:BackgroundSpinocerebellar ataxia type 10 (SCA10) is an autosomal dominant cerebellar ataxia, characterized by epilepsy, ataxic symptoms, and cognitive impairments linked to Cerebellar Cognitive Affective Syndrome (CCAS). The Cerebellar Cognitive Affective Syndrome Scale (CCAS-S) has been developed to identify CCAS across various cerebellar pathologies.ObjectiveTo determine whether patients with SCA10 exhibit CCAS using the CCAS-S, and to compare its effectiveness with the Montreal Cognitive Assessment (MoCA). A secondary objective was to evaluate the effect of demographic and clinical data on CCAS-S performance.MethodFifteen patients with SCA10 and fifteen matched controls underwent assessments using the CCAS-S, the MoCA, the Scale for the Assessment and Rating of Ataxia (SARA), and the Center for Epidemiologic Studies Depression Scale (CES-D). Diagnostic accuracy was analyzed using ROC curve analysis, comparing total and subcategory scores between groups. Demographic and clinical data were examined for relations with CCAS-S scores.ResultsThe CCAS-S effectively distinguished cognitive impairments in SCA10 patients, showing satisfactory sensitivity and specificity (AUC of 0.83). Although no significant differences were found in the AUCs between CCAS-S and MoCA (p = 0.45), the CCAS-S demonstrated a significantly larger effect size in the comparison between patients and control group (d = 2.33). Cognitive performance was poorer in patients than in controls (p = < 0.001), with depressive symptoms and age having a significant impact on CCAS-S outcomes.ConclusionsPatients with the SCA10 mutation exhibit CCAS. Besides the significant cognitive impairment, also detected by MoCA, the CCAS-S score was significantly affected by indicators of depressive mood and age, highlighting the importance of considering these variables during outcome analyses.
Project description:Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurodegenerative disease with a spectrum of phenotypes. SCA10 is caused by a pentanucleotide repeat expansion of the ATTCT motif within intron 9 of ATAXIN 10 (ATXN10). Patients present with cerebellar ataxia; however, a subset also develops epileptic seizures which significantly contribute to the morbidity and mortality of the disease. Past research from our lab has demonstrated that epileptic SCA10 patients predominantly originate from or have ancestral ties to Mexico. In addition, a large proportion of epileptic SCA10 patients carry repeat interruptions within their SCA10 expansion. This paper outlines the variability in SCA10 phenotypes and our attempts to model these phenotypes using transgenic mouse models and highlights the benefits of using a transgenic model organism to understand the pathological mechanisms of a human disease.
Project description:Spinocerebellar ataxia type 10 (SCA10) is a progressive genetic disorder caused by ATTCT pentanucleotide repeat expansions in intron 9 of the ATXN10 gene. ATTCT repeats have been reported to form unwound secondary structures which are likely linked to large-scale repeat expansions. In this study, we performed high-resolution nuclear magnetic resonance spectroscopic investigations on DNA sequences containing two to five ATTCT repeats. Strikingly, we found the first two repeats of all these sequences well folded into highly compact minidumbbell (MDB) structures. The 3D solution structure of the sequence containing two ATTCT repeats was successfully determined, revealing the MDB comprises a regular TTCTA and a quasi TTCT/A pentaloops with extensive stabilizing loop-loop interactions. We further carried out in vitro primer extension assays to examine if the MDB formed in the primer could escape from the proofreading function of DNA polymerase. Results showed that when the MDB was formed at 5-bp or farther away from the priming site, it was able to escape from the proofreading by Klenow fragment of DNA polymerase I and thus retained in the primer. The intriguing structural findings bring about new insights into the origin of genetic instability in SCA10.
Project description:IntroductionThere is a dearth of studies of spinocerebellar ataxias (SCAs) and diffusion tensor magnetic resonance imaging (DTI).ObjectiveTo analyze changes observed in DTI parameters and correlate these to clinical findings in SCA3 and SCA10 patients.MethodsSCA3 (n = 19) and SCA10 (n = 18) patients were compared with a similar number of controls and assessed clinically and with the scale for the assessment and rating of ataxia (SARA) before undergoing the same MRI protocol. TRACULA (TRActs Constrained by UnderLying Anatomy) software was used to analyze the DTI metrics FA, AD, RD and MD.ResultsMore white matter fiber tracts with changes in diffusivity were found in SCA3 patients than in SCA10 patients. There was a reduction in AD in altered fiber tracts in SCA3 and a greater increase in RD in SCA10. In the SCA3 patients, FA was reduced in the corticospinal tract (CST) and inferior longitudinal fasciculus (ILF), but this was not observed in the SCA10 patients. SARA score was correlated with DTI findings in SCA3 but not in SCA10.ConclusionChanges were observed in DTI for both SCA3 and SCA10 but were more widespread in SCA3. Our finding of myelin-sheath changes in SCA10 and secondary axonal changes in SCA3 may reflect the more rapid, aggressive clinical course of SCA3.
Project description:Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant disorder characterized by ataxia, seizures, and anticipation. It is caused by an expanded ATTCT pentanucleotide repeat in intron 9 of a novel gene, designated "SCA10." The ATTCT expansion in SCA10 represents a novel class of microsatellite repeat and is one of the largest found to cause human diseases. The expanded ATTCT repeat is unstably transmitted from generation to generation, and an inverse correlation has been observed between size of repeat and age at onset. In this multifamily study, we investigated the intergenerational instability, somatic and germline mosaicism, and age-dependent repeat-size changes of the expanded ATTCT repeat. Our results showed that (1) the expanded ATTCT repeats are highly unstable when paternally transmitted, whereas maternal transmission resulted in significantly smaller changes in repeat size; (2) blood leukocytes, lymphoblastoid cells, buccal cells, and sperm have a variable degree of mosaicism in ATTCT expansion; (3) the length of the expanded repeat was not observed to change in individuals over a 5-year period; and (4) clinically determined anticipation is sometimes associated with intergenerational contraction rather than expansion of the ATTCT repeat.
Project description:Spinocerebellar ataxia type 10 (SCA10), an autosomal dominant cerebellar ataxia disorder, is caused by a non-coding ATTCT microsatellite repeat expansion in the ataxin 10 gene. In a subset of SCA10 families, the 5'-end of the repeat expansion contains a complex sequence of penta- and heptanucleotide interruption motifs which is followed by a pure tract of tandem ATCCT repeats of unknown length at its 3'-end. Intriguingly, expansions that carry these interruption motifs correlate with an epileptic seizure phenotype and are unstable despite the theory that interruptions are expected to stabilize expanded repeats. To examine the apparent contradiction of unstable, interruption-positive SCA10 expansion alleles and to determine whether the instability originates outside of the interrupted region, we sequenced approximately 1 kb of the 5'-end of SCA10 expansions using the ATCCT-PCR product in individuals across multiple generations from four SCA10 families. We found that the greatest instability within this region occurred in paternal transmissions of the allele in stretches of pure ATTCT motifs while the intervening interrupted sequences were stable. Overall, the ATCCT interruption changes by only one to three repeat units and therefore cannot account for the instability across the length of the disease allele. We conclude that the AT-rich interruptions locally stabilize the SCA10 expansion at the 5'-end but do not completely abolish instability across the entire span of the expansion. In addition, analysis of the interruption alleles across these families support a parsimonious single origin of the mutation with a shared distant ancestor.
Project description:Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurodegenerative disease characterized by cerebellar ataxia and seizures. The disease is caused by a large ATTCT repeat expansion in the ATXN10 gene. The first families reported with SCA10 were of Mexican origin, but the disease was soon after described in Brazilian families of mixed Portuguese and Amerindian ancestry. The origin of the SCA10 expansion and a possible founder effect that would account for its geographical distribution have been the source of speculation over the last years. To unravel the mutational origin and spread of the SCA10 expansion, we performed an extensive haplotype study, using closely linked STR markers and intragenic SNPs, in families from Brazil and Mexico. Our results showed (1) a shared disease haplotype for all Brazilian and one of the Mexican families, and (2) closely-related haplotypes for the additional SCA10 Mexican families; (3) little or null genetic distance in small normal alleles of different repeat sizes, from the same SNP lineage, indicating that they are being originated by a single step mechanism; and (4) a shared haplotype for pure and interrupted expanded alleles, pointing to a gene conversion model for its generation. In conclusion, we show evidence for an ancestral common origin for SCA10 in Latin America, which might have arisen in an ancestral Amerindian population and later have been spread into the mixed populations of Mexico and Brazil.
Project description:Autosomal recessive spinocerebellar ataxia of type 10 (SCAR10) is a very rare neurodegenerative disease caused by mutations in the TMEM16K (ANO10) gene. This disorder is characterized by slowly progressive cerebellar ataxia and pyramidal signs inconstantly associated with cognitive decline, polyneuropathy, epilepsy, and vesicorectal dysfunction. To date, more than 40 cases have been reported in Europe. In contrast, only three cases have been identified in Asian countries. We herein report the third Japanese case of SCAR10 harboring a novel homozygous deletion mutation (c.616delG, p.Glu206Lysfs*17). This case presented with adult-onset slowly progressive spastic ataxia with cerebellar atrophy and mild cognitive decline.
Project description:Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant neurodegenerative disorder caused by a noncoding ATTCT pentanucleotide expansion. An inverse correlation between SCA10 expansion size and age at onset has been reported, and genetic anticipation has been documented. Interruptions in the ATTCT expansion are known to occur within the expansion. In order to determine the effect of repeat interruptions in SCA10 expansions, we designed a PCR assay to easily identify ATCCT repeat interruptions in the 5'-end of the expansion. We screened a cohort of 31 SCA10 families of Mexican, Brazilian and Argentinean ancestry to identify those with ATCCT repeat interruptions within their SCA10 expansions. We then studied the effects of ATCCT interruptions on intergenerational repeat instability, anticipation and age at onset. We find that the SCA10 expansion size is larger in SCA10 patients with an interrupted allele, but there is no difference in the age at onset compared with those expansions without detectable interruptions. An inverse correlation between the expansion size and the age at onset was found only with SCA10 alleles without interruptions. Interrupted expansion alleles show anticipation but are accompanied by a paradoxical contraction in intergenerational repeat size. In conclusion, we find that SCA10 expansions with ATCCT interruptions dramatically differ from SCA10 expansions without detectable ATCCT interruptions in repeat-size-instability dynamics and pathogenicity.