Unknown

Dataset Information

0

Bioinformatics-integrated screening of systemic sclerosis-specific expressed markers to identify therapeutic targets.


ABSTRACT:

Background

Systemic sclerosis (SSc) is a rare autoimmune disease characterized by extensive skin fibrosis. There are no effective treatments due to the severity, multiorgan presentation, and variable outcomes of the disease. Here, integrated bioinformatics was employed to discover tissue-specific expressed hub genes associated with SSc, determine potential competing endogenous RNAs (ceRNA) regulatory networks, and identify potential targeted drugs.

Methods

In this study, four datasets of SSc were acquired. To identify the genes specific to tissues or organs, the BioGPS web database was used. For differentially expressed genes (DEGs), functional and enrichment analyses were carried out, and hub genes were screened and shown in a network of protein-protein interactions (PPI). The potential lncRNA-miRNA-mRNA ceRNA network was constructed using the online databases. The specifically expressed hub genes and ceRNA network were validated in the SSc mouse and in normal mice. We also used the receiver operating characteristic (ROC) curve to determine the diagnostic values of effective biomarkers in SSc. Finally, the Drug-Gene Interaction Database (DGIdb) identified specific medicines linked to hub genes.

Results

The pooled datasets identified a total of 254 DEGs. The tissue/organ-specifically expressed genes involved in this analysis are commonly found in the hematologic/immune system and bone/muscle tissue. The enrichment analysis of DEGs revealed the significant terms such as regulation of actin cytoskeleton, immune-related processes, the VEGF signaling pathway, and metabolism. Cytoscape identified six gene cluster modules and 23 hub genes. And 4 hub genes were identified, including Serpine1, CCL2, IL6, and ISG15. Consistently, the expression of Serpine1, CCL2, IL6, and ISG15 was significantly higher in the SSc mouse model than in normal mice. Eventually, we found that MALAT1-miR-206-CCL2, let-7a-5p-IL6, and miR-196a-5p-SERPINE1 may be promising RNA regulatory pathways in SSc. Besides, ten potential therapeutic drugs associated with the hub gene were identified.

Conclusions

This study revealed tissue-specific expressed genes, SERPINE1, CCL2, IL6, and ISG15, as effective biomarkers and provided new insight into the mechanisms of SSc. Potential RNA regulatory pathways, including MALAT1-miR-206-CCL2, let-7a-5p-IL6, and miR-196a-5p-SERPINE1, contribute to our knowledge of SSc. Furthermore, the analysis of drug-hub gene interactions predicted TIPLASININ, CARLUMAB and BINDARIT as candidate drugs for SSc.

SUBMITTER: Jin J 

PROVIDER: S-EPMC10098096 | biostudies-literature | 2023

REPOSITORIES: biostudies-literature

altmetric image

Publications

Bioinformatics-integrated screening of systemic sclerosis-specific expressed markers to identify therapeutic targets.

Jin Jiahui J   Liu Yifan Y   Tang Qinyu Q   Yan Xin X   Jiang Miao M   Zhao Xu X   Chen Jie J   Jin Caixia C   Ou Qingjian Q   Zhao Jingjun J  

Frontiers in immunology 20230330


<h4>Background</h4>Systemic sclerosis (SSc) is a rare autoimmune disease characterized by extensive skin fibrosis. There are no effective treatments due to the severity, multiorgan presentation, and variable outcomes of the disease. Here, integrated bioinformatics was employed to discover tissue-specific expressed hub genes associated with SSc, determine potential competing endogenous RNAs (ceRNA) regulatory networks, and identify potential targeted drugs.<h4>Methods</h4>In this study, four data  ...[more]

Similar Datasets

| S-EPMC7797890 | biostudies-literature
| S-EPMC8957772 | biostudies-literature
| S-EPMC10256321 | biostudies-literature
| S-EPMC11267728 | biostudies-literature
| S-EPMC7956867 | biostudies-literature
| S-EPMC9961552 | biostudies-literature
| S-EPMC10369177 | biostudies-literature
| S-EPMC6703857 | biostudies-literature
| S-EPMC6704324 | biostudies-literature
| S-EPMC8467453 | biostudies-literature