Ligand-induced conformational changes enable intersubunit communications in D-dopachrome tautomerase.
Ontology highlight
ABSTRACT: D-Dopachrome tautomerase (D-DT; or MIF-2) is a multifunctional protein with immunomodulatory properties and a documented pathogenic role in inflammation and cancer that is associated with activation of the cell surface receptor CD74. Alongside D-DT, macrophage migration inhibitory factor (MIF) is also known to activate CD74, promoting pathogenesis. While the role of the MIF/CD74 axis has been extensively studied in various disease models, the late discovery of the D-DT/CD74 axis has led to a poor investigation into the D-DT-induced activation mechanism of CD74. A previous study has identified 4-(3-carboxyphenyl)-2,5-pyridinedicarboxylic acid (4-CPPC) as the first selective and reversible inhibitor of D-DT and reported its potency to block the D-DT-induced activation of CD74 in a cell-based model. In this study, we employ molecular dynamics simulations and nuclear magnetic resonance experiments to study 4-CPPC-induced changes to the dynamic profile of D-DT. We found that binding of the inhibitor remarkably promotes the conformational flexibility of C-terminal without impacting the structural stability of the biological assembly. Consequently, long-range intrasubunit (>11 Å) and intersubunit (>30 Å) communications are enabled between distal regions. Communication across the three subunits is accomplished via 4-CPPC, which serves as a communication bridge after Val113 is displaced from its hydrophobic pocket. This previously unrecognized structural property of D-DT is not shared with its human homolog, MIF, which exhibits an impressive C-terminal rigidity even in the presence of an inhibitor. Considering the previously reported role of MIF's C-terminal in the activation of CD74, our results break new ground for understanding the functionality of D-DT in health and disease.
SUBMITTER: Parkins A
PROVIDER: S-EPMC10111345 | biostudies-literature | 2023 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA