Project description:BackgroundSickle cell disease (SCD) is caused by an inherited structural abnormality of adult hemoglobin causing polymerization. Fetal hemoglobin interferes with polymerization but is epigenetically silenced by DNA methyltransferase 1 (DNMT1) in adult erythropoiesis. Decitabine depletes DNMT1 and increases fetal and total hemoglobin in SCD patients, but is rapidly catabolized by cytidine deaminase (CDA) in vivo. Tetrahydrouridine (THU) inhibits CDA, safeguarding decitabine.MethodsThe pharmacokinetics and pharmacodynamics of three oral combination formulations of THU and decitabine, with different coatings producing different delays in decitabine release, were investigated in healthy participants.ResultsTetrahydrouridine and decitabine were rapidly absorbed into the systemic circulation after a single combination oral dose, with relative bioavailability of decitabine ≥74% in fasted males compared with separate oral administration of THU followed by decitabine 1 h later. THU and decitabine Cmax and area under the plasma concentration versus time curve were higher in females versus males, and fasted versus fed states. Despite sex and food effect on pharmacokinetics, the pharmacodynamic effect of DNMT1 downregulation was comparable in males and females and fasted and fed states. Treatments were well tolerated.ConclusionCombination oral formulations of THU with decitabine produced pharmacokinetics and pharmacodynamics suitable for oral DNMT1-targeted therapy.
Project description:The deoxycytidine analog decitabine (DAC) can deplete DNA methyl-transferase 1 (DNMT1) and thereby modify cellular epigenetics, gene expression, and differentiation. However, a barrier to efficacious and accessible DNMT1-targeted therapy is cytidine deaminase, an enzyme highly expressed in the intestine and liver that rapidly metabolizes DAC into inactive uridine counterparts, severely limiting exposure time and oral bioavailability. In the present study, the effects of tetrahydrouridine (THU), a competitive inhibitor of cytidine deaminase, on the pharmacokinetics and pharmacodynamics of oral DAC were evaluated in mice and nonhuman primates. Oral administration of THU before oral DAC extended DAC absorption time and widened the concentration-time profile, increasing the exposure time for S-phase-specific depletion of DNMT1 without the high peak DAC levels that can cause DNA damage and cytotoxicity. THU also decreased interindividual variability in pharmacokinetics seen with DAC alone. One potential clinical application of DNMT1-targeted therapy is to increase fetal hemoglobin and treat hemoglobinopathy. Oral THU-DAC at a dose that would produce peak DAC concentrations of less than 0.2?M administered 2×/wk for 8 weeks to nonhuman primates was not myelotoxic, hypomethylated DNA in the ?-globin gene promoter, and produced large cumulative increases in fetal hemoglobin. Combining oral THU with oral DAC changes DAC pharmacology in a manner that may facilitate accessible noncytotoxic DNMT1-targeted therapy.
Project description:BackgroundRecent interest in the clinical use of psychedelics has highlighted plant-derived medicines like ayahuasca showing rapid-acting and sustainable therapeutic effects in various psychiatric conditions. This traditional Amazonian plant decoction contains N,N-dimethyltryptamine (DMT) and β-carboline alkaloids such as harmine. However, its use is often accompanied by distressing effects like nausea, vomiting, and intense hallucinations, possibly due to complex pharmacokinetic/pharmacodynamic (PK-PD) interactions and lack of dose standardization.MethodsThis study addresses these limitations by testing a novel pharmaceutical formulation containing pure forms of DMT and harmine in a double-blind, randomized, placebo-controlled trial with 31 healthy male volunteers. We evaluated PK-PD by monitoring drug and metabolite plasma levels, subjective effects, adverse events, and cardiovascular parameters. Each participant received 3 randomized treatments: (1) 100 mg buccal harmine with 100 mg intranasal DMT, (2) 100 mg buccal harmine with intranasal placebo, and (3) full placebo, using a repeated-intermittent dosing scheme, such that 10 mg of DMT (or placebo) was administered every 15 minutes.ResultsN,N-dimethyltryptamine produced consistent PK profiles with Cmax values of 22.1 ng/mL and acute drug effects resembling the psychological effects of ayahuasca with a duration of 2-3 hours. Likewise, buccal harmine produced sustained-release PK profiles with Cmax values of 32.5 ng/mL but lacked distinguishable subjective effects compared to placebo. All drug conditions were safe and well tolerated, indicating the formulation's suitability for clinical applications.ConclusionsThis study underscores the potential of a patient-oriented pharmaceutical formulation of DMT and harmine to reduce risks and improve therapeutic outcomes in treating mental health disorders.Clinical trial registration numberNeurodynamics of prosocial emotional processing following serotonergic stimulation with N,N-dimethyltryptamine (DMT) and harmine in healthy subjects (NCT04716335) https://clinicaltrials.gov/ct2/show/NCT04716335.
Project description:The development of safe topical microbicides that effectively prevent human immunodeficiency virus (HIV) infection is a major goal in curbing the human immunodeficiency virus pandemic. A number of past failures resulting from mucosal toxicity or lack of efficacy have informed the field. Products that caused toxicity to the female genital tract mucosa, and thereby increased the likelihood of HIV acquisition, included nonoxynol 9, cellulose sulfate, and C31 G vaginal gel Savvy. Topical products that were ineffective in preventing HIV infection include BufferGel, Carraguard, and PRO 2000. Antiretroviral drugs such as tenofovir and dapivirine formulated into microbicide products have shown promise, but there is much to learn about ideal product formulation and acceptability, and drug distribution and disposition (pharmacokinetics). Current formulations for water-soluble molecules include vaginally or rectally applied gels, vaginal rings, films and tablets. Dosing strategies (e.g. coitally dependent or independent) will be based on the pharmacokinetics of the active ingredient and the tolerance for less than perfect adherence.
Project description:Venglustat is a small-molecule glucosylceramide synthase (GCS) inhibitor designed to reduce the production of glucosylceramide (GL-1) and thus is expected to substantially reduce formation of glucosylceramide-based glycosphingolipids. Because of its effect on glycosphingolipid formation, GCS inhibition has therapeutic potential across many disorders affecting glycosphingolipid metabolism. Therefore, venglustat is under development for substrate reduction therapy in multiple diseases, including Gaucher disease type 3, Parkinson's disease associated with GBA mutations, Fabry disease, GM2 gangliosidosis, and autosomal dominant polycystic kidney disease. Phase 1 studies were conducted in healthy volunteers to determine venglustat pharmacokinetics, pharmacodynamics, safety, and tolerability and to assess food effects on pharmacokinetics (single-dose and food-effect studies: NCT01674036; repeated-dose study: NCT01710826). Following a single oral dose of venglustat l-malate (2, 5, 15, 25, 50, 100, or 150 mg), venglustat demonstrated linear pharmacokinetics, rapid absorption (median tmax , 3.00-5.50 hours), systemic exposure unaffected by food, low apparent total body clearance (mean CL/F, 5.18-6.43 L/h), and pooled geometric mean t1/2z of 28.9 hours. Following repeated once-daily oral doses of venglustat l-malate (5, 10, or 20 mg) for 14 days, apparent steady state occurred within 5 days of repeated dosing, with pooled accumulation ratios of 2.10 for Cmax and 2.22 for AUC0-24 , and no statistically significant effect of dose or sex on accumulation. The mean fraction of dose excreted unchanged in urine (fe0-24 ) was 26.3% to 33.1%. Plasma GL-1 and GM3 decreased time- and dose-dependently. Venglustat demonstrated a favorable safety and tolerability profile.
Project description:Sialorrhea or drooling is a common problem in children and adults with neurodevelopmental disorders. It can negatively impact the quality of life due to its physical and psychological manifestations. Providers commonly prescribe atropine eye drops for topical administration to the oral mucosa, as an off-label treatment to manage sialorrhea. However, the off-label use of atropine eye drops can be associated with medication and dosing errors and systemic side effects. To address these limitations of treatment, we developed a mucoadhesive topical oral gel formulation of atropine as an alternative route to off-label administration of atropine eye drops. In this clinical pharmacokinetic (PK) study, we evaluated the safety and PK of atropine gel (0.01% w/w) formulation after single-dose administration to the oral mucosa in 10 healthy volunteers. The PK data showed that after topical administration to the oral mucosa, atropine followed a two-compartment PK profile. The maximum plasma concentration and area under the curve extrapolated to infinite time were 0.14 ng/mL and 0.74 h·ng·mL-1 , respectively. The absorption rate constant calculated by the compartmental analysis was 0.4 h-1 . Safety parameters, such as heart rate, blood pressure, and oxygen saturation, did not significantly change before and after administration of the gel formulation, and no adverse events were observed in all participants who received atropine gel. These data indicate that atropine gel formulation has a satisfactory PK profile, is well-tolerated at the dose studied, and can be further considered for clinical development as a drug product to treat sialorrhea.
Project description:AimsTo verify whether the oral insulin N11005 is administered as a prandial insulin by assessing the pharmacokinetics (PK), pharmacodynamics (PD), and safety profiles of N11005 with a short-acting biosynthetic human insulin (Novolin R) as reference.MethodsThis was a randomized, open-label, single-dose, crossover hyperinsulinemic-euglycemic clamp study in healthy Chinese male subjects. A total of 12 subjects were enrolled in the test (T) group (N11005, 300 IU, p.o.) and the reference (R) group (Novolin R, 0.1 IU/Kg, i.h.) with a washout period of 14 days. All subjects were administered on the same day of the clamp study. Glucose Infusion Rates (GIR), serum insulin, and C-peptide concentration were determined during every 8-hour clamp cycle. Trial registration: Clinicaltrials.gov identifier NCT04975022.ResultsAfter administration, the ratios of mean serum C-peptide concentration to baseline concentration in both T and R groups were lower than 50%, which confirmed the stability of the clamp platform. T group (N11005) showed a more rapid onset of action (tGIR10%max≈11 min) and a comparable duration of action to the R group, which was basically in line with the characteristics of prandial insulins. No adverse events (AEs) occurred throughout the study, which demonstrated that N11005 and Novolin R are safe and well-tolerated.ConclusionsThe PD profiles of the single-dose N11005 in the human body are similar to those of prandial insulins, with an excellent safety profile.Clinical trial registrationClinicaltrials.gov, identifier NCT04975022.
Project description:One mechanism by which lymphoid malignancies resist standard apoptosis-intending (cytotoxic) treatments is genetic attenuation of the p53/p16-CDKN2A apoptosis axis. Depletion of the epigenetic protein DNA methyltransferase 1 (DNMT1) using the deoxycytidine analog decitabine is a validated approach to cytoreduce malignancy independent of p53/p16. In vivo decitabine activity, however, is restricted by rapid catabolism by cytidine deaminase (CDA). We, therefore, combined decitabine with the CDA-inhibitor tetrahydrouridine and conducted a pilot clinical trial in patients with relapsed lymphoid malignancies: the doses of tetrahydrouridine/decitabine used (∼10/0.2 mg/kg orally (PO) 2×/week) were selected for the molecular pharmacodynamic objective of non-cytotoxic, S-phase dependent, DNMT1-depletion, guided by previous Phase 1 studies. Patients with relapsed/refractory B- or T-cell malignancies (n = 7) were treated for up to 18 weeks. Neutropenia without concurrent thrombocytopenia is an expected toxicity of DNMT1-depletion and occurred in all patients (Grade 3/4). Subjective and objective clinical improvements occurred in 4 of 7 patients, but these responses were lost upon treatment interruptions and reductions to manage neutropenia. We thus performed parallel experiments in a preclinical in vivo model of lymphoma to identify regimen refinements that might sustain DNMT1-targeting in malignant cells but limit neutropenia. We found that timed-alternation of decitabine with the related molecule 5-azacytidine, and combination with inhibitors of CDA and de novo pyrimidine synthesis could leverage feedback responses of pyrimidine metabolism to substantially increase lymphoma cytoreduction but with less neutropenia. In sum, regimen innovations beyond incorporation of a CDA-inhibitor are needed to sustain decitabine DNMT1-targeting and efficacy against chemo-resistant lymphoid malignancy. Such potential solutions were explored in preclinical in vivo studies.
Project description:AimsThe aim of the present study was to characterize the pharmacokinetics and exposure-subjective response relationship of a novel oral solution of lysergic acid diethylamide (LSD) that was developed for clinical use in research and patients.MethodLSD (100 μg) was administered in 27 healthy subjects using a placebo-controlled, double-blind, cross-over design. Plasma levels of LSD, nor-LSD, and 2-oxo-3-hydroxy-LSD (O-H-LSD) and subjective drug effects were assessed up to 11.5 hours.ResultsFirst-order elimination kinetics were observed for LSD. Geometric mean maximum concentration (Cmax ) values (range) of 1.7 (1.0-2.9) ng/mL were reached at a tmax (range) of 1.7 (1.0-3.4) hours after drug administration. The plasma half-life (t1/2 ) was 3.6 (2.4-7.3) hours. The AUC∞ was 13 (7.1-28) ng·h/mL. No differences in these pharmacokinetic parameters were found between male and female subjects. Plasma O-H-LSD but not nor-LSD (< 0.01 ng/mL) concentrations could be quantified in all subjects. Geometric mean O-H-LSD Cmax values (range) of 0.11 (0.07-0.19) ng/mL were reached at a tmax (range) of 5 (3.2-8) hours. The t1/2 and AUC∞ values of O-H-LSD were 5.2 (2.6-21) hours and 1.7 (0.85-4.3) ng·h/mL, respectively. The subjective effects of LSD lasted (mean ± SD) for 8.5 ± 2.0 hours (range: 5.3-12.8 h), and peak effects were reached 2.5 ± 0.6 hours (range 1.6-4.3 h) after drug administration. EC50 values were 1.0 ± 0.5 ng/mL and 1.9 ± 1.0 ng/mL for "good" and "bad" subjective drug effects, respectively.ConclusionThe present study characterized the pharmacokinetics of LSD and its main metabolite O-H-LSD. The subjective effects of LSD were closely associated with changes in plasma concentrations over time.
Project description:BackgroundNonsteroidal anti-inflammatory drugs are administered in horses for several systemic diseases. Selective cyclooxygenase-2 inhibitors are preferred because of lower risk of adverse effects. Several meloxicam formulations have been tested in horses, but a recently marketed granule oral formulation has not been studied.ObjectiveTo characterize the pharmacokinetics of a novel granule meloxicam formulation in fasted and fed horses, and to compare pharmacokinetic features with oral suspension and tablets.AnimalsSeven healthy adult horses.MethodsMeloxicam was administered at 0.6 mg/kg in fasted or fed horses. Blood samples were collected for pharmacokinetic analysis, and vital signs, hematology, and biochemistry variables were monitored for 72 hours.ResultsNo adverse effects were detected. Volume of distribution and clearance after intravenous administration of meloxicam were 0.36 L/kg and 29.12 mL/h/kg, respectively, with a 12.39 hours of terminal half-life. Protein binding was of 97%. Bioavailability was high for every oral formulation, ranging 70%-110%, without feed effect. Because of a slower absorption, meloxicam after administration of granules had a longer half-life (24 and 34 hours, fasted and fed, respectively) and mean residence time (31 and 47 hours), than suspension and tablets (ranging 10-13 and 13-15 hours, respectively). In addition, the time above therapeutic concentration was higher for the granule formulation than other formulations.Conclusions and clinical importanceGranule formulation has different PK parameters compared to other oral formulations, which could enable this formulation to be used for different dosage regimens in order to reach a desired clinical effect or decrease the risk of adverse effects.