Project description:In this work, we investigated the functionalization of polyketone 30 (PK30) with glycyl-glycine (Gly-Gly) via the Paal-Knorr reaction with the aim of homogenously dispersing two types of reduced graphene oxide (rGO, i.e., lrGO and hrGO, the former characterized by a lower degree of reduction in comparison to the latter) by non-covalent interactions. The functional PK30-Gly-Gly polymer was effective in preparing composites with homogeneously distributed rGO characterized by an effective percolation threshold at 5 wt. %. All the composites showed a typical semiconductive behavior and stable electrical response after several heating/cooling cycles from 30 to 115 °C. Composites made by hrGO displayed the same resistive behaviour even if flanked by a considerable improvement on conductivity, in agreement with the more reduced rGO content. Interestingly, no permanent percolative network was shown by the composite with 4 wt. % of lrGO at temperatures higher than 45 °C. This material can be used as an ON-OFF temperature sensor and could find interesting applications as sensing material in soft robotics applications.
Project description:Conductive polymer composites require a three-dimensional 3D network to impart electrical conductivity. A general method that is applicable to most polymers for achieving a desirable graphene 3D network is still a challenge. We have developed a facile technique to fabricate highly electrical conductive composite using vacuum-assisted infusion of epoxy into graphene sponge GS scaffold. Macroscopic GSs were synthesized from graphene oxide solution by a hydrothermal method combined with freeze drying. The GS/epoxy composites prepared display consistent isotropic electrical conductivity around 1 S/m, and it is found to be close to that of the pristine GS. Compared with neat epoxy, GS/epoxy has a 12-orders-of-magnitude increase in electrical conductivity, attributed to the compactly interconnected graphene network constructed in the polymer matrix. This method can be extended to other materials to fabricate highly conductive composites for practical applications such as electronic devices, sensors, actuators, and electromagnetic shielding.
Project description:Fluorescent nanomaterials require high colloidal stability for effective use in imaging and sensing applications. We herein report the synthesis of carbazole-based organic fluorescent nanoaggregates, and demonstrate the superior colloidal stability of alkyl-substituted dye aggregates over their non-alkylated analogs. The role of alkyl chains in self-assembly and stability of such nanoaggregates is discussed based on both experimental and molecular dynamics simulation data, and spectral characteristics of the precursor dyes and their aggregates are described. The obtained results provide new insights on development of colloidally stable organic fluorescent nanomaterials with low polydispersity.
Project description:Fractal metallic dendrites have been drawing more attentions recently, yet they have rarely been explored in electronic printing or packaging applications because of the great challenges in large-scale synthesis and limited understanding in such applications. Here we demonstrate a controllable synthesis of fractal Ag micro-dendrites at the hundred-gram scale. When used as the fillers for isotropically electrically conductive composites (ECCs), the unique three-dimensional fractal geometrical configuration and low-temperature sintering characteristic render the Ag micro dendrites with an ultra-low electrical percolation threshold of 0.97 vol% (8 wt%). The ultra-low percolation threshold and self-limited fusing ability may address some critical challenges in current interconnect technology for microelectronics. For example, only half of the laser-scribe energy is needed to pattern fine circuit lines printed using the present ECCs, showing great potential for wiring ultrathin circuits for high performance flexible electronics.
Project description:We present novel design approaches for metasurfaces and metamaterials with electrical tunability offering real-time manipulation of light and serving as multifunctional devices in near-infrared frequency regime (at the specific wavelength of 1.55 μm). For this purpose, we integrate indium-tin-oxide (ITO) as a tunable electro-optical material into multimaterial nanowires with metal-oxide-semiconductor and metal-insulator-metal configurations. In particular, an active metasurface operating in the transmission mode is designed which allows for modulation of the transmitted light phase over 280 degrees. This large phase modulation is afforded in the cost of low transmission efficiency. We demonstrate the use of such active metasurfaces for tunable bending and focusing in free-space. Moreover, we investigate the implementation of this material in deeply subwavelength multimaterial nanowires, which can yield strong variations in the effective refractive index by the virtue of internal homogenization enabling tunability of the performance in gradient refractive index metamaterials. In the theoretical modeling of these structures, we adopt a hierarchical multiscale approach by linking drift-diffusion transport model with the electromagnetic model which rigorously characterizes the electro-optical effects.
Project description:A facile and effective strategy that can be used to fabricate electrically conductive membranes (ECMs) of diverse filtration performance (i.e., water productivity and solute rejection) is not available yet. Herein, we report a facile method that enables the fabrication of ECMs of a broad performance range. The method is based on the use of polyethylenimine (PEI), glutaraldehyde, and any of a diverse set of conductive materials to cast an electrically conductive layer atop any of a diverse set of substrates (i.e., from microfiltration to reverse osmosis membranes). We developed the reported ECM fabrication method using graphite as the conductive material and PVDF membranes as substrates. We demonstrate that graphite-PVDF ECMs were stable and electrically conductive and could be successfully used for solute filtration and electrochemical degradation. We also confirmed that the PEI/glutaraldehyde-based ECM fabrication method is suitable for conductive materials other than graphite, including carbon nanotubes, reduced graphene oxide, activated charcoal, and silver nanoparticles. Compared with the substrates used for their fabrication, ECMs showed low electrical sheet resistances that varied with conductive material, increased solute rejection, and reduced water permeance. Taken together, this work presents a promising general strategy for the fabrication of ECMs for environmental applications from diverse substrates and conductive materials.
Project description:Silver nanowires (AgNWs) thin films have emerged as promising next-generation transparent conductive electrodes (TCEs), and increasing the opto-electrical properties and long-term stability of AgNWs based TCEs is now a major research focus. In this work, a smooth, flexible, electrically conductive and highly stable transparent AgNWs-silica nanoparticles composite TCE has been successfully manufactured via coating an aqueous AgNWs-silica sol composite conductive ink on a PET substrate through the Mayer rod method. The effects of particle size and concentration of silica sol on the smoothness, opto-electrical properties and stability of AgNWs based TCEs were investigated in detail, and the mechanisms of the decoration of AgNWs by silica sol nanoparticles and welding of the network junction are discussed briefly. The TCE based on AgNWs reinforced with 50 nm silica nanoparticles (80 ppm concentration of silica sol) possesses a smooth surface with an RMS value of 9.45 nm, and superior opto-electrical properties with a sheet resistance of 28 Ω sq-1 and a transmittance of 97%. The resistance of the resultant AgNWs-silica composite TCE remains nearly constant after bending for 1000 cycles or exposure to Na2S solution for 300 s, indicating high stability. The newly designed AgNWs-silica composite TCE is a promising flexible and transparent electrode to be applied in next-generation flexible electronic devices.
Project description:Biomaterials such as seashells are intriguing due to their remarkable properties, including their hierarchical structure from the nanometer to the micro- or even macroscopic scale. Transferring this nanostructure to generate nanostructured polymers can improve their electrical conductivity. Here, we present the synthesis of polypyrrole using waste seashell powder as a template to prepare a polypyrrole/CaCO3 composite material. Various synthesis parameters were optimized to produce a composite material with an electrical conductivity of 2.1 × 10-4 ± 3.2 × 10-5 S/cm. This work presents the transformation of waste seashells into sustainable, electronically conductive materials and their application as an antistatic agent in polymers. The requirements of an antistatic material were met for a safety shoe sole.
Project description:Electrically conductive hydrogels represent an innovative platform for the development of bioelectronic devices. While photolithography technologies have enabled the fabrication of complex architectures with high resolution, photoprinting conductive hydrogels is still a challenging task because the conductive polymer absorbs light which can outcompete photopolymerization of the insulating scaffold. In this study, we introduce an approach to synthesizing conductive hydrogels in one step. Our approach combines the simultaneous photo-cross-linking of a polymeric scaffold and the polymerization of 3,4-ethylene dioxythiophene (EDOT), without additional photocatalysts. This process involves the copolymerization of photo-cross-linkable coumarin-containing monomers with sodium styrenesulfonate to produce a water-soluble poly(styrenesulfonate-co-coumarin acrylate) (P(SS-co-CoumAc)) copolymer. Our findings reveal that optimizing the [SS]:[CoumAc] ratio at 100:5 results in hydrogels with the strain at break up to 16%. This mechanical resilience is coupled with an electronic conductivity of 9.2 S m-1 suitable for wearable electronics. Furthermore, the conductive hydrogels can be photopatterned to achieve micrometer-sized structures with high resolution. The photo-cross-linked hydrogels are used as electrodes to record stable and reliable surface electromyography (sEMG) signals. These novel photo-cross-linkable polymers combined with one-pot PEDOT (poly-EDOT) polymerization open possibilities for rapidly prototyping complex bioelectronic devices and creating custom-designed interfaces between electronics and biological systems.
Project description:Long-distance electron transfer in marine environments couples physically separated redox half-reactions, impacting biogeochemical cycles of iron, sulfur and carbon. Bacterial bio-electrochemical systems that facilitate electron transfer via conductive filaments or across man-made electrodes are well-known, but the impact of abiotic currents across naturally occurring conductive and semiconductive minerals is poorly understood. In this paper I use cyclic voltammetry to explore electron transfer between electrodes made of common iron minerals (magnetite, hematite, pyrite, pyrrhotite, mackinawite, and greigite), and hydroquinones-a class of organic molecules found in carbon-rich sediments. Of all tested minerals, only pyrite and magnetite showed an increase in electric current in the presence of organic molecules, with pyrite showing excellent electrocatalytic performance. Pyrite electrodes performed better than commercially available glassy carbon electrodes and showed higher peak currents, lower overpotential values and a smaller separation between oxidation and reduction peaks for each tested quinone. Hydroquinone oxidation on pyrite surfaces was reversible, diffusion controlled, and stable over a large number of potential cycles. Given the ubiquity of both pyrite and quinones, abiotic electron transfer between minerals and organic molecules is likely widespread in Nature and may contribute to several different phenomena, including anaerobic respiration of a wide variety of microorganisms in temporally anoxic zones or in the proximity of hydrothermal vent chimneys, as well as quinone cycling and the propagation of anoxic zones in organic rich waters. Finally, interactions between pyrite and quinones make use of electrochemical gradients that have been suggested as an important source of energy for the origins of life on Earth. Ubiquinones and iron sulfide clusters are common redox cofactors found in electron transport chains across all domains of life and interactions between quinones and pyrite might have been an early analog of these ubiquitous systems.