Unknown

Dataset Information

0

Deep learning-based automated detection and multiclass classification of focal interictal epileptiform discharges in scalp electroencephalograms.


ABSTRACT: Detection and spatial distribution analyses of interictal epileptiform discharges (IEDs) are important for diagnosing, classifying, and treating focal epilepsy. This study proposes deep learning-based models to detect focal IEDs in electroencephalography (EEG) recordings of the frontal, temporal, and occipital scalp regions. This study included 38 patients with frontal (n = 15), temporal (n = 13), and occipital (n = 10) IEDs and 232 controls without IEDs from a single tertiary center. All the EEG recordings were segmented into 1.5-s epochs and fed into 1- or 2-dimensional convolutional neural networks to construct binary classification models to detect IEDs in each focal region and multiclass classification models to categorize IEDs into frontal, temporal, and occipital regions. The binary classification models exhibited accuracies of 79.3-86.4%, 93.3-94.2%, and 95.5-97.2% for frontal, temporal, and occipital IEDs, respectively. The three- and four-class models exhibited accuracies of 87.0-88.7% and 74.6-74.9%, respectively, with temporal, occipital, and non-IEDs F1-scores of 89.9-92.3%, 84.9-90.6%, and 84.3-86.0%; and 86.6-86.7%, 86.8-87.2%, and 67.8-69.2% for the three- and four-class (frontal, 50.3-58.2%) models, respectively. The deep learning-based models could help enhance EEG interpretation. Although they performed well, the resolution of region-specific focal IED misinterpretations and further model improvement are needed.

SUBMITTER: Chung YG 

PROVIDER: S-EPMC10130023 | biostudies-literature | 2023 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Deep learning-based automated detection and multiclass classification of focal interictal epileptiform discharges in scalp electroencephalograms.

Chung Yoon Gi YG   Lee Woo-Jin WJ   Na Sung Min SM   Kim Hunmin H   Hwang Hee H   Yun Chang-Ho CH   Kim Ki Joong KJ  

Scientific reports 20230425 1


Detection and spatial distribution analyses of interictal epileptiform discharges (IEDs) are important for diagnosing, classifying, and treating focal epilepsy. This study proposes deep learning-based models to detect focal IEDs in electroencephalography (EEG) recordings of the frontal, temporal, and occipital scalp regions. This study included 38 patients with frontal (n = 15), temporal (n = 13), and occipital (n = 10) IEDs and 232 controls without IEDs from a single tertiary center. All the EE  ...[more]

Similar Datasets

| S-EPMC6806666 | biostudies-literature
| S-EPMC8813051 | biostudies-literature
| S-EPMC6821283 | biostudies-literature
| S-EPMC8362617 | biostudies-literature
| S-EPMC5967586 | biostudies-literature
| S-EPMC8312480 | biostudies-literature
| S-EPMC8563407 | biostudies-literature
| S-EPMC5339047 | biostudies-literature
| S-EPMC8590709 | biostudies-literature
| S-EPMC11009358 | biostudies-literature