Unknown

Dataset Information

0

Acoustic Backscatter Communication and Power Transfer for Batteryless Wireless Sensors.


ABSTRACT: Sensors for industrial and structural health monitoring are often in shielded and hard-to-reach places. Acoustic wireless power transfer (WPT) and piezoelectric backscatter enable batteryless sensors in such scenarios. Although the low efficiency of WPT demands power-conserving sensor nodes, backscatter communication, which consumes near-zero power, has not yet been combined with WPT. This study reviews the available approaches to acoustic WPT and active and passive acoustic through-metal communication. We design a batteryless and backscattering tag prototype from commercially available components. Analysis of the prototypes reveals that low-power hardware poses additional challenges for communication, i.e., unstable and inaccurate oscillators. Therefore, we implement a software-defined receiver using digital phase-locked loops (DPLLs) to mitigate the effects of oscillator instability. We show that DPLLs enable reliable backscatter communication with inaccurate clocks using simulation and real-world measurements. Our prototype achieves communication at 2 kBs-1 over a distance of 3 m. Furthermore, during transmission, the prototype consumes less than 300 μW power. At the same time, over 4 mW of power is received through wireless transmission over a distance of 3 m with an efficiency of 2.8%.

SUBMITTER: Oppermann P 

PROVIDER: S-EPMC10147092 | biostudies-literature | 2023 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Acoustic Backscatter Communication and Power Transfer for Batteryless Wireless Sensors.

Oppermann Peter P   Renner Bernd-Christian BC  

Sensors (Basel, Switzerland) 20230330 7


Sensors for industrial and structural health monitoring are often in shielded and hard-to-reach places. Acoustic wireless power transfer (WPT) and piezoelectric backscatter enable batteryless sensors in such scenarios. Although the low efficiency of WPT demands power-conserving sensor nodes, backscatter communication, which consumes near-zero power, has not yet been combined with WPT. This study reviews the available approaches to acoustic WPT and active and passive acoustic through-metal commun  ...[more]

Similar Datasets

| S-EPMC7413398 | biostudies-literature
| S-EPMC11346738 | biostudies-literature
| S-EPMC9094660 | biostudies-literature
| S-EPMC4050616 | biostudies-literature
| S-EPMC10484967 | biostudies-literature
| S-EPMC9821345 | biostudies-literature
| S-EPMC5310757 | biostudies-literature
| S-EPMC6444737 | biostudies-literature
| S-EPMC8987052 | biostudies-literature
| S-EPMC7382277 | biostudies-literature