Ontology highlight
ABSTRACT: Purpose
We investigated the feasibility of preoperative 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) radiomics with machine learning to predict microsatellite instability (MSI) status in colorectal cancer (CRC) patients.Materials and methods
Altogether, 233 patients with CRC who underwent preoperative FDG PET/CT were enrolled and divided into training (n=139) and test (n=94) sets. A PET-based radiomics signature (rad_score) was established to predict the MSI status in patients with CRC. The predictive ability of the rad_score was evaluated using the area under the receiver operating characteristic curve (AUROC) in the test set. A logistic regression model was used to determine whether the rad_score was an independent predictor of MSI status in CRC. The predictive performance of rad_score was compared with conventional PET parameters.Results
The incidence of MSI-high was 15 (10.8%) and 10 (10.6%) in the training and test sets, respectively. The rad_score was constructed based on the two radiomic features and showed similar AUROC values for predicting MSI status in the training and test sets (0.815 and 0.867, respectively; p=0.490). Logistic regression analysis revealed that the rad_score was an independent predictor of MSI status in the training set. The rad_score performed better than metabolic tumor volume when assessed using the AUROC (0.867 vs. 0.794, p=0.015).Conclusion
Our predictive model incorporating PET radiomic features successfully identified the MSI status of CRC, and it also showed better performance than the conventional PET image parameters.
SUBMITTER: Kim S
PROVIDER: S-EPMC10151228 | biostudies-literature | 2023 May
REPOSITORIES: biostudies-literature
Kim Soyoung S Lee Jae-Hoon JH Park Eun Jung EJ Lee Hye Sun HS Baik Seung Hyuk SH Jeon Tae Joo TJ Lee Kang Young KY Ryu Young Hoon YH Kang Jeonghyun J
Yonsei medical journal 20230501 5
<h4>Purpose</h4>We investigated the feasibility of preoperative <sup>18</sup>F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) radiomics with machine learning to predict microsatellite instability (MSI) status in colorectal cancer (CRC) patients.<h4>Materials and methods</h4>Altogether, 233 patients with CRC who underwent preoperative FDG PET/CT were enrolled and divided into training (n=139) and test (n=94) sets. A PET-based radiomics signature (rad_score) w ...[more]