Project description:If "bridging" to allo-transplantation (Tx) is to be achieved by a pig liver xenograft, adequate hepatic function needs to be assured.We have studied hepatic function in baboons after Tx of livers from alpha1,3-galactosyltransferase gene-knockout (GTKO, n=1) or GTKO pigs transgenic for CD46 (GTKO/CD46, n=5). Monitoring was by liver function tests and coagulation parameters. Pig-specific proteins in the baboon serum/plasma were identified by Western blot. In four baboons, coagulation factors were measured. The results were compared with values from healthy humans, baboons, and pigs.Recipient baboons died or were euthanized after 4 to 7 days after internal bleeding associated with profound thrombocytopenia. However, parameters of liver function, including coagulation, remained in the near-normal range, except for some cholestasis. Western blot demonstrated that pig proteins (albumin, fibrinogen, haptoglobin, and plasminogen) were produced by the liver from day 1. Production of several pig coagulation factors was confirmed.After the Tx of genetically engineered pig livers into baboons (1) many parameters of hepatic function, including coagulation, were normal or near normal; (2) there was evidence for production of pig proteins, including coagulation factors; and (3) these appeared to function adequately in baboons although interspecies compatibility of such proteins remains to be confirmed.
Project description:To develop novel medical technologies, pig disease models are invaluable especially in the final stages of translational research. Recently, we established a genetically engineered ornithine transcarbamylase-deficient (OTCD) pig strain. Here, we report its characterization and treatment responsiveness. OTCD pigs were obtained by mating an OTCD carrier female (OTC-Xc.186_190delXWT) with a wild-type male. Due to the X-linked recessive mode of inheritance, the disease phenotype emerged only in males. Medication with nitrogen-scavenging agents was based on a clinical protocol. OTCD pigs were born smaller than their wild-type and carrier littermates, showing anemia and faltering. Biochemically, high levels of urinary orotic acid and loss of OTC activity were observed. The natural life course of OTCD pigs was characterized by a decrease in arterial percentage saturation of oxygen and body temperature, as well as an increase in blood ammonia levels; the pigs died in 24.0 ± 5.0 h (mean ± SD, n = 6). The established standard medication composed with nitrogen-scavenging agents and transfusion nearly doubled the survival time to 42.4 ± 13.7 h (n = 6). Our OTCD pig model appropriately mimicked the human pathology. Along with established protocols in handling and medication, this is a first step in developing a large animal disease model that is useful for translational research into novel medical technologies, such as cell transplantation and gene therapy, as well as in relation to urea cycle disorder.
Project description:SCN5A encodes the ? subunit of the major cardiac sodium channel Na(V)1.5. Mutations in SCN5A are associated with conduction disease and ventricular fibrillation (VF); however, the mechanisms that link loss of sodium channel function to arrhythmic instability remain unresolved. Here, we generated a large-animal model of a human cardiac sodium channelopathy in pigs, which have cardiac structure and function similar to humans, to better define the arrhythmic substrate. We introduced a nonsense mutation originally identified in a child with Brugada syndrome into the orthologous position (E558X) in the pig SCN5A gene. SCN5A(E558X/+) pigs exhibited conduction abnormalities in the absence of cardiac structural defects. Sudden cardiac death was not observed in young pigs; however, Langendorff-perfused SCN5A(E558X/+) hearts had an increased propensity for pacing-induced or spontaneous VF initiated by short-coupled ventricular premature beats. Optical mapping during VF showed that activity often began as an organized focal source or broad wavefront on the right ventricular (RV) free wall. Together, the results from this study demonstrate that the SCN5A(E558X/+) pig model accurately phenocopies many aspects of human cardiac sodium channelopathy, including conduction slowing and increased susceptibility to ventricular arrhythmias.
Project description:Severe pulmonary infection is a major threat to human health accompanied by substantial medical costs, prolonged inpatient requirements, and high mortality rates. New anti-microbial therapeutic strategies are urgently required to address the emergence of antibiotic resistance and persistent bacterial infections. In this study, we show that constitutive expression of a native anti-microbial peptide LL37 in transgenic mice aids in clearing Pseudomonas aeruginosa (PAO1), a major pathogen of clinical pulmonary infection. Orthotopic transplantation of adult mouse distal airway stem cells (DASCs), genetically engineered to express LL-37, into injured mouse lung foci enabled large scale incorporation of cells and long-term release of the host defense peptide, protecting the mice from bacterial pneumonia and hypoxemia. Further, correlates of DASCs in adult human were isolated, expanded, and genetically engineered to demonstrate successful construction of an anti-infective artificial lung. Together, our stem cell-based gene delivery therapeutic platform proposes a new strategy for addressing recurrent pulmonary infections with future translational opportunities.
Project description:BACKGROUND:We investigated in vitro whether HLA highly sensitized patients with end-stage renal disease will be disadvantaged immunologically after a genetically engineered pig kidney transplant. METHODS:Blood was drawn from patients with a calculated panel-reactive antibody (cPRA) 99% to 100% (Gp1, n = 10) or cPRA 0% (Gp2, n = 12), and from healthy volunteers (Gp3, n = 10). Serum IgM and IgG binding was measured (i) to galactose-α1-3 galactose and N-glycolylneuraminic acid glycans by enzyme-linked immunosorbent assay, and (ii) to pig red blood cell, pig aortic endothelial cells, and pig peripheral blood mononuclear cell from α1,3-galactosyltransferase gene-knockout (GTKO)/CD46 and GTKO/CD46/cytidine monophosphate-N-acetylneuraminic acid hydroxylase-knockout (CMAHKO) pigs by flow cytometry. (iii) T-cell and B-cell phenotypes were determined by flow cytometry, and (iv) proliferation of T-cell and B-cell carboxyfluorescein diacetate succinimidyl ester-mixed lymphocyte reaction. RESULTS:(i) By enzyme-linked immunosorbent assay, there was no difference in IgM or IgG binding to galactose-α1-3 galactose or N-glycolylneuraminic acid between Gps1 and 2, but binding was significantly reduced in both groups compared to Gp3. (ii) IgM and IgG binding in Gps1 and 2 was also significantly lower to GTKO/CD46 pig cells than in healthy controls, but there were no differences between the 3 groups in binding to GTKO/CD46/CMAHKO cells. (iii and iv) Gp1 patients had more memory T cells than Gp2, but there was no difference in T or B cell proliferation when stimulated by any pig cells. The proliferative responses in all 3 groups were weakest when stimulated by GTKO/CD46/CMAHKO pig peripheral blood mononuclear cell. CONCLUSIONS:(i) End-stage renal disease was associated with low antipig antibody levels. (ii) Xenoreactivity decreased with increased genetic engineering of pig cells. (iii) High cPRA status had no significant effect on antibody binding or T-cell and B-cell response.
Project description:Severe pulmonary infection is a major threat to human health accompanied by substantial medical costs, prolonged inpatient requirements, and high mortality rates. New antimicrobial therapeutic strategies are urgently required to address the emergence of antibiotic resistance and persistent bacterial infections. In this study, we show that the constitutive expression of a native antimicrobial peptide LL-37 in transgenic mice aids in clearing Pseudomonas aeruginosa (PAO1), a major pathogen of clinical pulmonary infection. Orthotopic transplantation of adult mouse distal airway stem cells (DASCs), genetically engineered to express LL-37, into injured mouse lung foci enabled large-scale incorporation of cells and long-term release of the host defense peptide, protecting the mice from bacterial pneumonia and hypoxemia. Further, correlates of DASCs in adult humans were isolated, expanded, and genetically engineered to demonstrate successful construction of an anti-infective artificial lung. Together, our stem cell-based gene delivery therapeutic platform proposes a new strategy for addressing recurrent pulmonary infections with future translational opportunities.
Project description:Platelet sequestration is a common process during organ reperfusion after transplantation. However, instead of lower platelet counts, when using traditional hemocytometers and light microscopy, we observed physiologically implausible platelet counts in the course of ex-vivo lung and liver xenograft organ perfusion studies. We employed conventional flow cytometry (FC) and imaging FC (AMINS ImageStream X) to investigate the findings and found platelet-sized fragments in the circulation that are mainly derived from red blood cell membranes. We speculate that this erythrocyte fragmentation contributes to anemia during in-vivo organ xenotransplant.
Project description:ESC/iPSC-retinal sheet transplantation, which supplies photoreceptors as well as other retinal cells, has been shown to be able to restore visual function in mice with end-stage retinal degeneration. Here, by introducing a novel type of genetically engineered mouse ESC/iPSC-retinal sheet with reduced numbers of secondary retinal neurons but intact photoreceptor cell layer structure, we reinforced the evidence that ESC/iPSC-retinal sheet transplantation can establish synaptic connections with the host, restore light responsiveness, and reduce aberrant retinal ganglion cell spiking in mice. Furthermore, we show that genetically engineered grafts can substantially improve the outcome of the treatment by improving neural integration. We speculate that this leads to reduced spontaneous activity in the host which in turn contributes to a better visual recovery.
Project description:Choroid plexus carcinomas (CPCs) are highly malignant brain tumours predominantly found in children and associated to poor prognosis. Improved therapy for these cancers would benefit from the generation of animal models. Here we have created a novel mouse CPC model by expressing a stabilised form of c-Myc (MycT58A) and inactivating Trp53 in the choroid plexus of newborn mice. This induced aberrant proliferation of choroid plexus epithelial cells, leading to aggressive tumour development and death within 150 days. Choroid plexus tumours occurred with a complete penetrance in all brain ventricles, with prevalence in the lateral and fourth ventricles. Histological and cellular analysis indicated that these tumours were CPCs resembling their human counterparts. Comparison of gene expression profiles of CPCs and non-neoplastic tissues revealed profound alterations in cell cycle regulation and DNA damage responses, suggesting that dysregulation of cell division and DNA checkpoint pathways may represent key vulnerabilities. This novel animal model of CPC provides an invaluable tool to elucidate the mechanism of CPC formation and to develop successful therapies against this devastating paediatric cancer.