Correction: Fructus Amomi extract attenuates nasal inflammation by restoring Th1/Th2 balance and downregulation of NF-kB phosphorylation in OVA-induced allergic rhinitis.
Correction: Fructus Amomi extract attenuates nasal inflammation by restoring Th1/Th2 balance and downregulation of NF-kB phosphorylation in OVA-induced allergic rhinitis.
Project description:Fructus Amomi Cardamomi (FA) is the mature fruit of Amomum villosum Lour (family Zingiberaceae) and is commonly used in Chinese traditional medicine to treat various gastrointestinal disorders. FA's possible benefits as an allergic rhinitis (AR) treatment, however, have not been examined. We used an ovalbumin (OVA)-induced AR mouse model to identify any anti-allergic effects associated with the administration of 200 mg/kg FA or dexamethasone (Dex) 2.5 mg/kg by oral administration. The results of our testing confirm that FA ameliorated nasal symptoms and alleviated nasal epithelium swelling, reduced the goblet cell hyperplasia and eosinophil cell infiltration in the nasal epithelium, and inhibited lung tissue inflammation and Dex as well. Significantly decreased Th2 cytokine (interleukin (IL)-1β, IL-4, and IL-5) expression, and a correspondingly significant increase in Th1 cytokine (IL-12, interferon (IFN)-γ) production, was observed in nasal lavage fluid (NALF) taken from mice that received FA or Dex treatment. FA also reduced the presence of OVA-specific immunoglobulin (Ig) E, OVA-specific IgG1, and histamine levels in serum, and inhibited mast cell degranulation in vitro. In addition, these effects were involved with the reduction in NF-κB phosphorylation. These results suggest that FA restores Th1/Th2 balance and inhibits NF-κB phosphorylation and mast cell degranulation, thereby achieving a notable anti-inflammatory effect. Accordingly, it has the potential to be used as an efficacious therapeutic treatment for AR.
Project description:We investigated the mechanisms underlying the therapeutic effects of Yiqi Jiemin decoction (YJD), a traditional Chinese medicine (TCM), in the ovalbumin (OVA)-induced allergic rhinitis (AR) model in guinea pigs. YJD significantly decreased infiltration of mast cells and eosinophils into the nasal mucosa of AR model guinea pigs. YJD also increased expression of TGF-β in the nasal mucosa, restored the balance of Th1/Th2 immune cell responses, and decreased serum levels of various pro-inflammatory mediators, including histamine (HA), neuropeptide Y (NPY), acetylcholine (ACH), norepinephrine and immunoglobulin E (IgE). Metabolic analyses using liquid chromatography coupled with high-resolution mass spectrometry revealed that YJD improved cellular metabolism in AR model guinea pigs and increased serum levels of glycocholic acid while decreasing levels 1-palmitoyl lysophosphatidic acid. RNA-sequencing analysis identified BPIFB2 as a potential diagnostic biomarker and therapeutic target for AR. Functional enrichment analyses showed that YJD significantly inhibited cytokine secretion pathways in AR model guinea pigs. These findings demonstrate that YJD protects against OVA-induced AR in guinea pigs by suppressing inflammation in the nasal mucosa, restoring Th1/Th2 balance, and improving cellular metabolism.
Project description:Thymic stromal lymphopoietin (TSLP) and IL-33 are epithelium-derived proallergic cytokines that contribute to allergic diseases. Although the involvement of TSLP in allergic rhinitis (AR) is suggested, the exact role of TSLP in AR is poorly understood. Furthermore, the relative contribution of TSLP and IL-33 in nasal allergic responses has not been described. In this study, we examined the roles of TSLP and IL-33 in AR by analyzing acute and chronic AR models. Acute AR mice were intraperitoneally immunized with ragweed, then intranasally challenged with ragweed pollen for four consecutive days. Chronic AR mice were nasally administrated ragweed pollen on consecutive days for 3 weeks. In both models, TSLP receptor (TSLPR)-deficient mice showed defective sneezing responses and reduced serum ragweed-specific IgE levels compared with wild-type (WT) mice. Analyses of bone-marrow chimeric mice demonstrated that hematopoietic cells were responsible for defective sneezing in TSLPR-deficient mice. In addition, FcεRI(+)-cell-specific TSLPR-deficient mice showed partial but significant reduction in sneezing responses. Of note, Th2 activation and nasal eosinophilia were comparable between WT and TSLPR-deficient mice. ST2- and IL-33-deficient mice showed defective Th2 activation and nasal eosinophilia to acute, but not chronic, ragweed exposure. TSLPR and ST2 double-deficient mice showed defective Th2 activation and nasal eosinophilia even after chronic ragweed exposure. These results demonstrate that TSLPR signaling is critical for the early phase response of AR by controlling the IgE-mast-cell/basophil pathway. The IL-33/ST2 pathway is central to nasal Th2 activation during acute allergen exposure, but both TSLPR and ST2 contribute to Th2 responses in chronically allergen-exposed mice.
Project description:BackgroundS100A7 is an antimicrobial peptide involved in several inflammatory diseases. The aim of the present study was to explore the expression and regulation of S100A7 in seasonal allergic rhinitis (SAR).MethodsNasal lavage (NAL) fluid was obtained from healthy controls before and after lipopolysaccharide (LPS) provocation, from SAR patients before and after allergen challenge, and from SAR patients having completed allergen-specific immunotherapy (ASIT). Nasal biopsies, nasal epithelial cells and blood were acquired from healthy donors. The airway epithelial cell line FaDu was used for in vitro experiments. Real-time RT-PCR and immunohistochemistry were used to determine S100A7 expression in nasal tissue and cells. Release of S100A7 in NAL and culture supernatants was measured by ELISA. The function of recombinant S100A7 was explored in epithelial cells, neutrophils and peripheral blood mononuclear cells (PBMC).ResultsNasal administration of LPS induced S100A7 release in healthy non-allergic subjects. The level of S100A7 was lower in NAL from SAR patients than from healthy controls, and it was further reduced in the SAR group 6 h post allergen provocation. In contrast, ASIT patients displayed higher levels after completed treatment. S100A7 was expressed in the nasal epithelium and in glands, and it was secreted by cultured epithelial cells. Stimulation with IL-4 and histamine repressed the epithelial S100A7 release. Further, recombinant S100A7 induced activation of neutrophils and PBMC.ConclusionsThe present study shows an epithelial expression and excretion of S100A7 in the nose after microbial stimulation. The levels are diminished in rhinitis patients and in the presence of an allergic cytokine milieu, suggesting that the antimicrobial defense is compromised in patients with SAR.
Project description:Tight junction defects (TJ) have been associated with a defective epithelial barrier function in allergic rhinitis (AR). Intranasal corticosteroids are potent drugs frequently used to treat AR and are shown to restore epithelial integrity by acting on TJs and by reducing type 2 cytokine production. However, the effect of different classes of intranasal corticosteroids on the epithelial barrier has not been studied. Therefore, we compared the effect of 2 intranasal corticosteroids, ie, fluticasone furoate (FF) and mometasone furoate (MF) on epithelial barrier function. Both FF and MF similarly increased trans-epithelial electrical resistance of primary nasal epithelial cell cultures from AR patients. In a house dust mite-induced allergic asthma mouse model, FF and MF had similar beneficial effects on fluorescein isothiocyanate-dextran 4 kDa mucosal permeability, eosinophilic infiltration and IL-13 levels. Both molecules increased mRNA expression of the TJ proteins occludin and zonula occludens-1, thereby restoring epithelial barrier function. Lastly, we showed that long-term FF treatment also increased expression of occludin in AR patients compared to controls. In conclusion, both FF and MF effectively restore epithelial barrier function by increasing expression of TJ proteins in AR patients.
Project description:Allergic rhinitis (AR) is one of the most common allergic diseases, which adversely affect patients' quality of life. Mahuang Fuzi Xixin decoction (MFXD) has been widely used to treat AR in clinics in Asian countries. This study investigated the effect and possible therapeutic mechanisms of MFXD in the treatment of AR. A Wistar rat model of ovalbumin- (OVA-) induced AR was established and then treated with three doses of MFXD; AR symptoms, serum total immunoglobulin E, histamine, histopathological features, and release and expression of factors related to type 1 helper T (Th1) and type 2 helper T (Th2) responses were analyzed. Our study demonstrated that MFXD has a good therapeutic effect on OVA-induced allergic inflammation in an AR rat model as manifested in reduced frequencies of sneezing and nasal scratching and in reduced serum levels of total IgE and HIS. In addition, MFXD regulates imbalance in Th1/Th2 cells caused by AR by simultaneously attenuating Th1 and Th2 responses, such as by reducing the serum levels of IFN-γ and IL-4 and mRNA expression levels of IFN-γ, IL-4, GATA-3, and STAT-6. This study provided valuable information on the immunoregulatory effect of MFXD for the treatment of AR in future clinical studies.
Project description:PurposeThe prevalence of "ocal allergic rhinitis" within individuals suffering from perennial rhinitis remains uncertain, and patients usually are diagnosed with non-allergic rhinitis. The aim of this study was to evaluate the prevalence of a potential "local allergic rhinitis" in subjects suffering from non-allergic rhinitis in a non-selected group of young students.Methods131 students (age 25.0 ± 5.1 years) with a possible allergic rhinitis and 25 non-allergic controls without rhinitis symptoms (age 22.0 ± 2.0 years) were recruited by public postings. 97 of 131 students with rhinitis were tested positive (≥3 mm) to prick testing with 17 frequent allergens at visit 1. Twenty-four 24 subjects with a house dust mite allergy, 21 subjects with a non-allergic rhinitis, and 18 non-allergic controls were further investigated at visit 2. Blood samples were taken, and nasal secretion was examined. In addition, all groups performed a nasal provocation test with house dust mite (HDM).ResultsIn serum and nasal secretion, total IgE and house dust mite specific IgE significantly differed between HDM positive subjects and controls. However, no differences between non-allergic subjects and control subjects were quantifiable. Neither a nasal provocation test nor a nasal IgE to HDM allergens showed a measurable positive response in any of the non-allergic rhinitis subjects as well as the healthy controls, whilst being positive in 13 subjects with HDM allergy.ConclusionsNasal IgE is present in subjects with HDM allergy, but not in non-allergic rhinitis. In the investigated non-selected population, exclusive local production of IgE is absent. By implication, therefore, our findings challenge the emerging concept of local allergic rhinitis.Study identifier at ClinicalTrials.gov: NCT02810535.
Project description:IntroductionSKF-96365 is regarded as an inhibitor of receptor-mediated calcium ion (Ca2+) entry. The current study aimed to explore the effects of SKF-96365 on murine allergic rhinitis (AR).MethodsIntranasal SKF-96365 administration was performed on OVA induced murine AR. Serum and nasal lavage fluid (NLF) from mice were harvested to assay IgE and inflammatory cytokines using ELISA method. Inflammatory cells were counted and analyzed in NLF. Nasal mucosa tissues were collected from mice and used for HE staining, immunohistochemistry (IHC) staining, and real-time PCR detection.ResultsSKF-96365 had therapeutic effects on murine AR manifesting attenuation of sneezing, nasal rubbing, IgE, inflammatory cytokines, inflammatory cells, TRPC6 immunolabeling, and TRPC6, STIM1 and Orai1 mRNA levels in AR mice.ConclusionSKF-96365 could effectively alleviate the symptoms of murine AR. SKF-96365 could suppress TRPC6, STIM1, and Orai1 activities, leading to the downregulation of inflammatory cytokines and inflammatory cells in murine AR.
Project description:To identify the effect of long noncoding RNA (lncRNA) FR215775 in regulating CD4+ T cells on murine models of allergic rhinitis (AR), the expression of lncRNA FR215775 in primary Th2 cells was detected through qRT-PCR. After knocking down the expression of lncRNA FR215775 via Sh-FR215775-Ads, Cell Counting Kit-8, cytometric bead array, and fluorescence-activated cell sorting were performed to determine its functions in vitro. Moreover, lncRNA FR215775-silencing or nonsilencing cells were injected intravenously into AR mice. Then, hematoxylin and eosin, Alcian blue-periodic acid Schiff, and toluidine blue staining were performed, and the levels of IL-2, IL-4, IL-5, IL-6, IL-10, IL-17A, IFN-γ, and TNF in the AR mice were also determined. We found that the expression of lncRNA FR215775 was specifically higher in the murine primary Th2 cells. After the knockdown of lncRNA FR215775, the proliferation of CD4+ T cells was inhibited, and the expressions of IL-4 and IL-5 in the cell culture supernatant were significantly decreased (P < 0.001), along with the percentage of Th2 cells (P < 0.05). The lncRNA FR215775-silencing AR group showed less serious allergic symptoms and a low level of ovalbumin-specific immunoglobulin E (P < 0.01). Meanwhile, the eosinophilia inflammation, goblet cell hyperplasia, and mast cell inflammation in the nasal mucosa all decreased, which indicated attenuated allergic inflammation in the lncRNA FR215775-silencing AR group. In addition, the Th2-related cytokines IL-4 and IL-5 were downregulated in the serum and nasal lavage fluid of this group (P < 0.01). In conclusion, lncRNA FR215775 may play a vital role in the function and differentiation of Th2 cells, which may encourage allergic inflammation. These results may provide significant insights into AR pathogenesis and offer new treatment targets for alleviating AR.
Project description:IntroductionAlthough recent studies have shown that the human microbiome is involved in the pathogenesis of allergic diseases, the impact of microbiota on allergic rhinitis (AR) and non-allergic rhinitis (nAR) has not been elucidated. The aim of this study was to investigate the differences in the composition of the nasal flora in patients with AR and nAR and their role in the pathogenesis.MethodFrom February to September 2022, 35 AR patients and 35 nAR patients admitted to Harbin Medical University's Second Affiliated Hospital, as well as 20 healthy subjects who underwent physical examination during the same period, were subjected to 16SrDNA and metagenomic sequencing of nasal flora.ResultsThe microbiota composition of the three groups of study subjects differs significantly. The relative abundance of Vibrio vulnificus and Acinetobacter baumanni in the nasal cavity of AR patients was significantly higher when compared to nAR patients, while the relative abundance of Lactobacillus murinus, Lactobacillus iners, Proteobacteria, Pseudomonadales, and Escherichia coli was lower. In addition, Lactobacillus murinus and Lacttobacillus kunkeei were also negatively correlated with IgE, while Lacttobacillus kunkeei was positively correlated with age. The relative distribution of Faecalibacterium was higher in moderate than in severe AR patients. According to KEGG functional enrichment annotation, ICMT(protein-S-isoprenylcysteine O-methyltransferase,ICMT) is an AR microbiota-specific enzyme that plays a role, while glycan biosynthesis and metabolism are more active in AR microbiota. For AR, the model containing Parabacteroides goldstemii, Sutterella-SP-6FBBBBH3, Pseudoalteromonas luteoviolacea, Lachnospiraceae bacterium-615, and Bacteroides coprocola had the highest the area under the curve (AUC), which was 0.9733(95%CI:0.926-1.000) in the constructed random forest prediction model. The largest AUC for nAR is 0.984(95%CI:0.949-1.000) for the model containing Pseudomonas-SP-LTJR-52, Lachnospiraceae bacterium-615, Prevotella corporis, Anaerococcus vaginalis, and Roseburia inulinivorans.ConclusionIn conclusion, patients with AR and nAR had significantly different microbiota profiles compared to healthy controls. The results suggest that the nasal microbiota may play a key role in the pathogenesis and symptoms of AR and nAR, providing us with new ideas for the treatment of AR and nAR.