Unknown

Dataset Information

0

The Effects of Artificial Intelligence Assistance on the Radiologists' Assessment of Lung Nodules on CT Scans: A Systematic Review.


ABSTRACT: To reduce the number of missed or misdiagnosed lung nodules on CT scans by radiologists, many Artificial Intelligence (AI) algorithms have been developed. Some algorithms are currently being implemented in clinical practice, but the question is whether radiologists and patients really benefit from the use of these novel tools. This study aimed to review how AI assistance for lung nodule assessment on CT scans affects the performances of radiologists. We searched for studies that evaluated radiologists' performances in the detection or malignancy prediction of lung nodules with and without AI assistance. Concerning detection, radiologists achieved with AI assistance a higher sensitivity and AUC, while the specificity was slightly lower. Concerning malignancy prediction, radiologists achieved with AI assistance generally a higher sensitivity, specificity and AUC. The radiologists' workflows of using the AI assistance were often only described in limited detail in the papers. As recent studies showed improved performances of radiologists with AI assistance, AI assistance for lung nodule assessment holds great promise. To achieve added value of AI tools for lung nodule assessment in clinical practice, more research is required on the clinical validation of AI tools, impact on follow-up recommendations and ways of using AI tools.

SUBMITTER: Ewals LJS 

PROVIDER: S-EPMC10219568 | biostudies-literature | 2023 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

The Effects of Artificial Intelligence Assistance on the Radiologists' Assessment of Lung Nodules on CT Scans: A Systematic Review.

Ewals Lotte J S LJS   van der Wulp Kasper K   van den Borne Ben E E M BEEM   Pluyter Jon R JR   Jacobs Igor I   Mavroeidis Dimitrios D   van der Sommen Fons F   Nederend Joost J  

Journal of clinical medicine 20230518 10


To reduce the number of missed or misdiagnosed lung nodules on CT scans by radiologists, many Artificial Intelligence (AI) algorithms have been developed. Some algorithms are currently being implemented in clinical practice, but the question is whether radiologists and patients really benefit from the use of these novel tools. This study aimed to review how AI assistance for lung nodule assessment on CT scans affects the performances of radiologists. We searched for studies that evaluated radiol  ...[more]

Similar Datasets

| S-EPMC7931546 | biostudies-literature
| S-EPMC11439040 | biostudies-literature
| S-EPMC10019704 | biostudies-literature
| S-EPMC9606065 | biostudies-literature
| S-EPMC8182724 | biostudies-literature
| S-EPMC5545995 | biostudies-literature
| S-EPMC8959781 | biostudies-literature
| S-EPMC8743520 | biostudies-literature
| S-EPMC11320525 | biostudies-literature