Project description:Recently, GaTe and C2N monolayers have been successfully synthesized and show fascinating electronic and optical properties. Such hybrid of GaTe with C2N may induce new novel physical properties. In this work, we perform ab initio simulations on the structural, electronic, and optical properties of the GaTe/C2N van der Waals (vdW) heterostructure. Our calculations show that the GaTe/C2N vdW heterostructure is an indirect-gap semiconductor with type-II band alignment, facilitating an effective separation of photogenerated carriers. Intriguingly, it also presents enhanced visible-UV light absorption compared to its components and can be tailored to be a good photocatalyst for water splitting at certain pH by applying vertical strains. Further, we explore specifically the adsorption and decomposition of water molecules on the surface of C2N layer in the heterostructure and the subsequent formation of hydrogen, which reveals the mechanism of photocatalytic hydrogen production on the 2D GaTe/C2N heterostructure. Moreover, it is found that in-plane biaxial strains can induce indirect-direct-indirect, semiconductor-metal, and type II to type I or type III transitions. These interesting results make the GaTe/C2N vdW heterostructure a promising candidate for applications in next generation of multifunctional optoelectronic devices.
Project description:Na-ion batteries (NIBs) are attracting widespread interest as a potentially more convenient alternative to current state-of-the-art Li-ion batteries (LIBs), chiefly for large-scale energy storage from renewables. Developing novel active materials is essential for the deployment of NIBs, especially in terms of negative electrodes that can accommodate the larger sodium ions. We focus on TiO2 anatase, which has been proposed as a promising anode material for the overall balance of performance, stability and cost. As the exposed crystal facets in different morphologies of nanostructured anatase can affect the electrochemical performances, here we report a theoretical investigation of Na+ adsorption and migration through (101), (100) and (001) surface terminations, thus explaining the different activities toward sodiation reported in the literature. Energy barriers computed by means of the CI-NEB method at the DFT+U level of theory show that the (001) surface is the most effective termination for Na+ insertion. We also provide a detailed analysis to elucidate that the energy barriers are due to structural modifications of the lattice upon sodiation. From these results we derive new design directions for the development of cheap and effective oxide-based nanostructured electrode materials for advanced NIBs.
Project description:Chemical doping and other surface modifications have been used to engineer the bulk properties of materials, but their influence on the surface structure and consequently the surface chemistry are often unknown. Previous work has been successful in fluorinating anatase TiO2 with charge balance achieved via the introduction of Ti vacancies rather than the reduction of Ti. Our work here investigates the interface between this fluorinated titanate with cationic vacancies and a monolayer of water via density functional theory based molecular dynamics. We compute the projected density of states for only those atoms at the interface and for those states that fall within 1 eV of the Fermi level for various steps throughout the simulation, and we determine that the variation in this visualization of the density of states serves as a reasonable tool to anticipate where surfaces are most likely to be reactive. In particular, we conclude that water dissociation at the surface is the main mechanism that influences the anatase (001) surface whereas the change in the density of states at the surface of the fluorinated structure is influenced primarily through the adsorption of water molecules.
Project description:Elucidating the structure of the interface between natural (reduced) anatase TiO2 (101) and water is an essential step toward understanding the associated photoassisted water splitting mechanism. Here we present surface X-ray diffraction results for the room temperature interface with ultrathin and bulk water, which we explain by reference to density functional theory calculations. We find that both interfaces contain a 25:75 mixture of molecular H2O and terminal OH bound to titanium atoms along with bridging OH species in the contact layer. This is in complete contrast to the inert character of room temperature anatase TiO2 (101) in ultrahigh vacuum. A key difference between the ultrathin and bulk water interfaces is that in the latter water in the second layer is also ordered. These molecules are hydrogen bonded to the contact layer, modifying the bond angles.
Project description:Uranium silicide U3Si5 has been explored as an advanced nuclear fuel component for light water reactor to enhance the accident tolerance. In this paper, in order to understand the fuel performance of U3Si5, the primary point defects, secondary point defects, and the dissolution of He gas were studied by first-principles methods. Compared with U atoms and another type of Si2 atoms, Si1 atoms far from intrinsic Si vacancies are more likely to form point defects, implying that Si vacancies are prone to form separate single vacancies rather than vacancy clusters in the initial stage. From the calculated anti-site defect energies, it can be predicted that non-stoichiometric U-rich phase of U3Si5 are more likely to be formed than Si-rich phase, which are consistent with the chemical analysis of experimentally sintered Si-lean U3Si5 sample. It can be found that a single He atom favors residence in the interstitial site in the U layer directly above/below the intrinsic vacancy. It can also be seen that Vac-U, Vac-Si1, and Vac-Si2 vacancies can energetically accommodate up to 4, 0, and 3 He atoms, respectively. The formation of secondary vacancy defects is strongly dependent on the helium concentration. The current results show that the He-filled vacancy can promote the formation of adjacent secondary vacancy, leading to the formation of gas bubbles. This work may provide theoretical insights into the He irradiation-induced damage in U3Si5 as well as provide valuable clues for improving the design of the UN-U3Si5 composite fuel.
Project description:The acid-base properties of surfaces significantly influence catalytic and (photo)electrochemical processes. Estimation of acid dissociation constants (pKa values) for colloids is commonly performed through electroanalytical techniques or spectroscopic methods employing label molecules. Here, we show that polarimetric angle-resolved second harmonic scattering (AR-SHS) can be used as an all-optical, label-free probe of colloid surface pKa values. We apply AR-SHS to dispersions of 100 nm anatase TiO2 particles to extract surface potential and surface susceptibility, a measure of interfacial water orientation, as a function of pH. The surface potential follows changes in surface charge density, while the interfacial water orientation inverts at pH ∼4.8, ∼6, and ∼7.6. As the variation in bulk pH modifies the populations of Ti-OH2+, Ti-OH, and Ti-O- interfacial groups, a change in water orientation reports on the ratio of protonated/deprotonated species. Such observation allows for pKa evaluation from plots of surface susceptibility versus pH. A Nerstian trend in the surface potential is additionally demonstrated.
Project description:Anatase titanium oxide is important for its high chemical stability and photocatalytic properties, however, the latter are plagued by its large band gap that limits its activity to only a small percentage of the solar spectrum. In that respect, straining the material can reduce its band gap increasing the photocatalytic activity of titanium oxide. We apply density functional theory with the introduction of the Hubbard + U model, to investigate the impact of stress on the electronic structure of anatase in conjunction with defect engineering by intrinsic defects (oxygen/titanium vacancies and interstitials), metallic dopants (iron, chromium) and non-metallic dopants (carbon, nitrogen). Here we show that both biaxial and uniaxial strain can reduce the band gap of undoped anatase with the use of biaxial strain being marginally more beneficial reducing the band gap up to 2.96 eV at a tensile stress of 8 GPa. Biaxial tensile stress in parallel with doping results in reduction of the band gap but also in the introduction of states deep inside the band gap mainly for interstitially doped anatase. Dopants in substitutional positions show reduced deep level traps. Chromium-doped anatase at a tensile stress of 8 GPa shows the most significant reduction of the band gap as the band gap reaches 2.4 eV.
Project description:We report a phase-pure kesterite Cu2ZnSnS4 (CZTS) thin films, synthesized using radio frequency (RF) sputtering followed by low-temperature H2S annealing and confirmed by XRD, Raman spectroscopy and XPS measurements. Subsequently, the band offsets at the interface of the CZTS/CdS heterojunction were systematically investigated by combining experiments and first-principles density functional theory (DFT) calculations, which provide atomic-level insights into the nature of atomic ordering and stability of the CZTS/CdS interface. A staggered type II band alignment between the valence and conduction bands at the CZTS/CdS interface was determined from Cyclic Voltammetry (CV) measurements and the DFT calculations. The conduction and valence band offsets were estimated at 0.10 and 1.21 eV, respectively, from CV measurements and 0.28 and 1.15 from DFT prediction. Based on the small conduction band offset and the predicted higher positions of the VBmax and CBmin for CZTS than CdS, it is suggested photogenerated charge carriers will be efficient separated across the interface, where electrons will flow from CZTS to the CdS and and vice versa for photo-generated valence holes. Our results help to explain the separation of photo-excited charge carriers across the CZTS/CdS interface and it should open new avenues for developing more efficient CZTS-based solar cells.
Project description:Due to its intriguing geometry, possessing an open-channel structure, Si24 demonstrates potential for storing and/or transporting Li/Na ions in rechargeable batteries. In this work, first-principles calculations were employed to investigate the phase stability and Li/Na storage and transport properties of the Si24 anode to evaluate its electrochemical performance for batteries. The intercalation of Li and Na into the Si24 structure could deliver a capacity of 159 mA h g-1 (Li4Si24 and Na4Si24), and the average intercalation potentials were 0.17 V (vs. Li) and 0.34 V (vs. Na). Moreover, the volume change of Si24 upon intercalation proved very small (0.09% for Li, 2.81% for Na), indicating its "zero-strain" properties with stable cycling performance. Li+ and Na+ can diffuse along the channels inside the Si24 structure with barrier energies of 0.14 and 0.80 eV respectively, and the ionic conductivity of Li2.66Si24 was calculated to be as high as 1.03 × 10-1 S cm-1 at 300 K. Our calculations indicate that the fast Li-ionic conductivity properties make the Si24 structure a novel anode material for both lithium and sodium ion batteries.
Project description:Mg2XIV (XIV = Si, Ge, Sn) compounds are semiconductors and their solid solutions are believed to be promising mid-temperature thermoelectric materials. By contrast, Mg2Pb is a metal and few studies have been conducted to investigate the thermoelectric properties of Mg2Si-Mg2Pb solid solutions. Here, we present a theoretical study exploring whether Mg2Pb-Mg2Si solid solutions can be used as thermoelectric materials or not. We firstly constructed several Mg2Si1-x Pb x (0 ≤ x ≤ 1) structures and calculated their electronic structures. It is suggested that Mg2Si1-x Pb x are potential thermoelectric semiconductors in the range of 0 ≤ x ≤ 0.25. We then explicitly computed the electron relaxation time and both the electronic and lattice thermal conductivities of Mg2Si1-x Pb x (0 ≤ x ≤ 0.25) and studied the effect of Pb concentration on the Seebeck coefficient, electrical conductivity, thermal conductivity, and thermoelectric figure of merit (ZT). At low Pb concentration (x = 1/16), the ZT of the Mg2Si1-x Pb x solid solutions (up to 0.67 at 900 K) reaches a maximum and is much higher than that of Mg2Si.