Unknown

Dataset Information

0

Vitamin D3 attenuates SARS-CoV-2 nucleocapsid protein-caused hyperinflammation by inactivating the NLRP3 inflammasome through the VDR-BRCC3 signaling pathway in vitro and in vivo.


ABSTRACT: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-caused coronavirus disease 2019 (COVID-19) is a global crisis with no satisfactory therapies. Vitamin D3 (VD3) is considered a potential candidate for COVID-19 treatment; however, little information is available regarding the exact effects of VD3 on SARS-CoV-2 infection and the underlying mechanism. Herein, we confirmed that VD3 reduced SARS-CoV-2 nucleocapsid (N) protein-caused hyperinflammation in human bronchial epithelial (HBE) cells. Meanwhile, VD3 inhibited the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation in N protein-overexpressed HBE (HBE-N) cells. Notably, the inhibitors of caspase-1, NLRP3, and NLRP3 or caspase-1 small interference RNA (siRNA) enhanced VD3-induced NLRP3 inflammasome inactivation, with subsequent suppression of interleukin-6 (IL6) and IL1β release in HBE-N cells, which were abolished by the NLRP3 agonist. Moreover, VD3 increased NLRP3 ubiquitination (Ub-NLRP3) expression and the binding of the VDR with NLRP3, with decreased BRCA1/BRCA2-containing complex subunit 3 (BRCC3) expression and NLRP3-BRCC3 association. VD3-induced Ub-NLRP3 expression, NLRP3 inflammasome inactivation, and hyperinflammation inhibition were improved by the BRCC3 inhibitor or BRCC3 siRNA, which were attenuated by the vitamin D receptor (VDR) antagonist or VDR siRNA in HBE-N cells. Finally, the results of the in vivo study in AAV-Lung-enhanced green fluorescent protein-N-infected lungs were consistent with the findings of the in vitro experiment. In conclusion, VD3 attenuated N protein-caused hyperinflammation by inactivating the NLRP3 inflammasome partially through the VDR-BRCC3 signaling pathway.

SUBMITTER: Chen M 

PROVIDER: S-EPMC10285036 | biostudies-literature | 2023 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Vitamin D3 attenuates SARS-CoV-2 nucleocapsid protein-caused hyperinflammation by inactivating the NLRP3 inflammasome through the VDR-BRCC3 signaling pathway in vitro and in vivo.

Chen Mingliang M   He Ying Y   Hu Xiaofeng X   Dong Xunhu X   Yan Zexuan Z   Zhao Qingning Q   Li Jingyuan J   Xiang Dongfang D   Lin Yong Y   Song Hongbin H   Bian Xiuwu X  

MedComm 20230621 4


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-caused coronavirus disease 2019 (COVID-19) is a global crisis with no satisfactory therapies. Vitamin D3 (VD3) is considered a potential candidate for COVID-19 treatment; however, little information is available regarding the exact effects of VD3 on SARS-CoV-2 infection and the underlying mechanism. Herein, we confirmed that VD3 reduced SARS-CoV-2 nucleocapsid (N) protein-caused hyperinflammation in human bronchial epithelial  ...[more]

Similar Datasets

| S-EPMC10486421 | biostudies-literature
| S-EPMC8811745 | biostudies-literature
| S-EPMC5601702 | biostudies-literature
| S-EPMC7882108 | biostudies-literature
| S-EPMC8329225 | biostudies-literature
| S-EPMC9196652 | biostudies-literature
| S-EPMC5998354 | biostudies-literature
| S-EPMC7835056 | biostudies-literature
| S-EPMC5155141 | biostudies-literature
| S-EPMC8826720 | biostudies-literature