Unknown

Dataset Information

0

Microenvironmental mechanoactivation through Yap/Taz suppresses chondrogenic gene expression.


ABSTRACT: Chondrocyte phenotype is preserved when cells are round and the actin cytoskeleton is cortical. Conversely, these cells rapidly dedifferentiate in vitro with increased mechanoactive Rho signaling, which increases cell size and causes large actin stress fiber to form. While the effects of Rho on chondrocyte phenotype are well established, the molecular mechanism is not yet fully elucidated. Yap, a transcriptional coregulator, is regulated by Rho in a mechanotransductive manner and can suppress chondrogenesis in vivo. Here, we sought to elucidate the relationship between mechanoactive Rho and Yap on chondrogenic gene expression. We first show that decreasing mechanoactive state through Rho inhibition results in a broad increase in chondrogenic gene expression. Next, we show that Yap and its coregulator Taz are negative regulators of chondrogenic gene expression, and removal of these factors promotes chondrogenesis even in environments that promote cell spreading. Finally, we establish that Yap/Taz is essential for translating Rho-mediated signals to negatively regulate chondrogenic gene expression, and that its removal negates the effects of increased Rho signaling. Together, these data indicate that Rho is a mechanoregulator of chondrogenic differentiation, and that its impact on chondrogenic expression is exerted principally through mechanically induced translocation and activity of Yap and Taz.

SUBMITTER: Hallstrom GF 

PROVIDER: S-EPMC10295477 | biostudies-literature | 2023 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Microenvironmental mechanoactivation through Yap/Taz suppresses chondrogenic gene expression.

Hallström Grey F GF   Jones Dakota L DL   Locke Ryan C RC   Bonnevie Edward D ED   Kim Sung Yeon SY   Laforest Lorielle L   Garcia Diana Cruz DC   Mauck Robert L RL  

Molecular biology of the cell 20230412 7


Chondrocyte phenotype is preserved when cells are round and the actin cytoskeleton is cortical. Conversely, these cells rapidly dedifferentiate in vitro with increased mechanoactive Rho signaling, which increases cell size and causes large actin stress fiber to form. While the effects of Rho on chondrocyte phenotype are well established, the molecular mechanism is not yet fully elucidated. Yap, a transcriptional coregulator, is regulated by Rho in a mechanotransductive manner and can suppress ch  ...[more]

Similar Datasets

| S-EPMC4644508 | biostudies-literature
| S-EPMC6082140 | biostudies-literature
| S-EPMC8945957 | biostudies-literature
| S-EPMC5145813 | biostudies-literature
| S-EPMC10860428 | biostudies-literature
| S-EPMC6953103 | biostudies-literature
| S-EPMC7528706 | biostudies-literature
| S-EPMC4329470 | biostudies-literature
| S-EPMC6873206 | biostudies-literature
| S-EPMC10147829 | biostudies-literature