Project description:Norbornene derivatives are typical monomers for ring-opening metathesis polymerization (ROMP) for synthesizing highly functional polymers. However, the lack of catalytic methods, that is, the lack of readily available chain transfer agents (CTAs) for these monomers has been a significant cost limitation when large-scale syntheses are required. Here, we report commercially available styrene and its derivatives as efficient regioselective CTAs for the catalytic synthesis of metathesis polymers requiring up to 1000 times less ruthenium than in classical ROMP experiments. The molecular weight of the synthesized polymers was controlled by the monomer-to-CTA ratio. Low molecular weight ROMP polymers known for their antimicrobial properties were also synthesized on a gram scale in this report. Polymers were characterized by SEC, 1H NMR spectroscopy, and isotopically resolved MALDI-TOF MS. This approach describes a greener, more cost-effective, and eco-friendly methodology for the preparation of metathesis-based materials on the multigram scale.
Project description:The ring-opening metathesis polymerization (ROMP) of cyclopropenes using hydrazonium initiators is described. The initiators, which are formed by the condensation of 2,3-diazabicyclo[2.2.2]octane and an aldehyde, polymerize cyclopropene monomers by a sequence of [3+2] cycloaddition and cycloreversion reactions. This process generates short chain polyolefins (Mn ≤9.4 kg mol-1 ) with relatively low dispersities (Đ≤1.4). The optimized conditions showed efficiency comparable to that achieved with Grubbs' 2nd generation catalyst for the polymerization of 3-methyl-3-phenylcyclopropene. A positive correlation between monomer to initiator ratio and degree of polymerization was revealed through NMR spectroscopy.
Project description:Pyridine-containing polymers are promising materials for a variety of applications from the capture of contaminants to the self-assembly of block copolymers. However, the innate Lewis basicity of the pyridine motif often hampers living polymerization catalyzed by transition-metal complexes. Herein, we report the expedient synthesis of pyridinonorbornene monomers via a [4+2] cycloaddition between 2,3-pyridynes and cyclopentadiene. Well-controlled ring-opening metathesis polymerization was enabled by careful structural design of the monomer. Polypyridinonorbornenes exhibited high Tg and Td, a promising feature for high-temperature applications. Investigation of the polymerization kinetics and of the reactivity of the chain ends shed light on the influence of nitrogen coordination on the chain-growth mechanism.
Project description:The living ring-opening metathesis polymerization (ROMP) of an unsaturated twisted amide using the third-generation Grubbs initiator is described. Unlike prior examples of ROMP monomers that rely on angular or steric strain for propagation, this system is driven by resonance destabilization of the amide that arises from geometric constraints of the bicyclic framework. Upon ring-opening, the amide can rotate and rehybridize to give a stabilized and planar conjugated system that promotes living propagation. The absence of other strain elements in the twisted amide is supported by the inability of a carbon analogue of the monomer to polymerize and computational studies that find resonance destabilization accounts for 11.3 kcal mol-1 of the overall 12.0 kcal mol-1 ring strain. The twisted amide polymerization is capable of preparing high molecular weight polymers rapidly at room temperature, and post-polymerization modification combined with 2D NMR spectroscopy confirms a regioirregular polymer microstructure.
Project description:Cis-selective ring-opening metathesis polymerization of several monocyclic alkenes as well as norbornene and oxanorbornene-type monomers using a C-H activated, ruthenium-based metathesis catalyst is reported. The cis content of the isolated polymers depended heavily on the monomer structure and temperature. A cis content as high as 96% could be obtained by lowering the temperature of the polymerization.
Project description:We report the utility of readily available heterocycles as precursors to unique ring-opening metathesis polymerization (ROMP) monomers. Photochemical valence isomerization reactions of pyridones, dihydropyridines, and pyrones dearomatize the parent heterocycles to their highly strained Dewar isomers, which readily engage in controlled ROMP reactions using Grubbs catalysts. This strategy is used to access polymer backbones that contain strained β-lactam and azetidine cores, which can be further derivatized using post-polymerization chemistries. We demonstrate this through the synthesis of water-soluble β-amino acid polymers that have potential applications as biomedical materials, along with the synthesis of highly-soluble poly(acetylene) derivatives, which have potential applications as organic conductive materials derived from bio-feedstock chemicals.
Project description:Well-defined molecular brushes bearing polypeptides as side chains were prepared by a "grafting through" synthetic strategy with two-dimensional control over the brush molecular architectures. By integrating N-carboxyanhydride ring-opening polymerizations (NCA ROPs) and ring-opening metathesis polymerizations (ROMPs), desirable segment lengths of polypeptide side chains and polynorbornene brush backbones were independently constructed in controlled manners. The N2 flow accelerated NCA ROP was utilized to prepare polypeptide macromonomers with different lengths initiated from a norbornene-based primary amine, and those macromonomers were then polymerized via ROMP. It was found that a mixture of dichloromethane and an ionic liquid were required as the solvent system to allow for construction of molecular brush polymers having densely-grafted peptide chains emanating from a polynorbornene backbone, poly(norbornene-graft-poly(β-benzyl-l-aspartate)) (P(NB-g-PBLA)). Highly efficient postpolymerization modification was achieved by aminolysis of PBLA side chains for facile installment of functional moieties onto the molecular brushes.
Project description:Multifunctionality and effectiveness of macroporous solid foams in extreme environments have captivated the attention of both academia and industries. The most recent rapid, energy-efficient strategy to manufacture solid foams with directionality is the frontal polymerization (FP) of dicyclopentadiene (DCPD). However, there still remains the need for a time efficient one-pot approach to induce anisotropic macroporosity in DCPD foams. Here we show a rapid production of cellular solids by frontally polymerizing a mixture of DCPD monomer and allyl-functionalized cellulose nanocrystals (ACs). Our results demonstrate a clear correlation between increasing % allylation and AC wt%, and the formed pore architectures. Especially, we show enhanced front velocity (vf) and reduced reaction initiation time (tinit) by introducing an optimal amount of 2 wt% AC. Conclusively, the small- and wide-angle X-ray scattering (SAXS, WAXS) analyses reveal that the incorporation of 2 wt% AC affects the crystal structure of FP-mediated DCPD/AC foams and enhances their oxidation resistance. Polymeric solid foams have several beneficial properties such as their light weight, thermal insulation or shock absorbance, but it is still challenging to efficiently control the foam architecture. Here, the authors optimize the frontal polymerization of dicyclopentadiene with allyl-functionalized cellulose nanocrystals to rapidly achieve solid foams with modified structures and enhanced oxidation resistance.