Ontology highlight
ABSTRACT:
SUBMITTER: Pavlovic M
PROVIDER: S-EPMC10312379 | biostudies-literature | 2021 Nov
REPOSITORIES: biostudies-literature
Pavlović Milena M Scheffer Lonneke L Motwani Keshav K Kanduri Chakravarthi C Kompova Radmila R Vazov Nikolay N Waagan Knut K Bernal Fabian L M FLM Costa Alexandre Almeida AA Corrie Brian B Akbar Rahmad R Al Hajj Ghadi S GS Balaban Gabriel G Brusko Todd M TM Chernigovskaya Maria M Christley Scott S Cowell Lindsay G LG Frank Robert R Grytten Ivar I Gundersen Sveinung S Haff Ingrid Hobæk IH Hovig Eivind E Hsieh Ping-Han PH Klambauer Günter G Kuijjer Marieke L ML Lund-Andersen Christin C Martini Antonio A Minotto Thomas T Pensar Johan J Rand Knut K Riccardi Enrico E Robert Philippe A PA Rocha Artur A Slabodkin Andrei A Snapkov Igor I Sollid Ludvig M LM Titov Dmytro D Weber Cédric R CR Widrich Michael M Yaari Gur G Greiff Victor V Sandve Geir Kjetil GK
Nature machine intelligence 20211116 11
Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adaptive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders it an ideal approach for AIRR-based diagnostic and therapeutic discovery. To date, widespread adoption of AIRR ML has been inhibited by a lack of reproducibility, transparency, and interoperability. immuneML (immuneml.uio.no) addresses these concerns by impl ...[more]