Project description:Liver splitting allows the opportunity to share a deceased graft between 2 recipients but remains underutilized. We hypothesized that liver splitting during continuous dual hypothermic oxygenated machine perfusion (DHOPE) is feasible, with shortened total cold ischemia times and improved logistics. Here, we describe a left lateral segment (LLS) and extended right lobe (ERL) liver split procedure during continuous DHOPE preservation with subsequent transplantation at 2 different centers.MethodsAfter transport using static cold storage, a 51-year-old brain death donor liver underwent end-ischemic DHOPE. During DHOPE, the donor liver was maintained <10 °C and oxygenated with a Po2 of >106 kPa. An ex situ ERL/LLS split was performed with continuing DHOPE throughout the procedure to avoid additional ischemia time.ResultsTotal cold ischemia times for the LLS and ERL were 205 minutes and 468 minutes, respectively. Both partial grafts were successfully transplanted at 2 different transplant centers. Peak aspartate aminotransferase and alanine aminotransferase were 172 IU/L and 107 IU/L for the LLS graft, and 839 IU/L and 502 IU/L for the ERL graft, respectively. The recipient of the LLS experienced an episode of acute cellular rejection. The ERL transplantation was complicated by severe acute pancreatitis with jejunum perforation requiring percutaneous drainage and acute cellular rejection. No device-related adverse events were observed.ConclusionsLiver splitting during continuous DHOPE preservation is feasible, has the potential to substantially shorten cold ischemia time and may optimize transplant logistics. Therefore liver splitting with DHOPE can potentially improve utilization of split liver transplantation.
Project description:BackgroundThe gap between the demand and supply of donor livers is still a considerable challenge. Since static cold storage is not sufficient in marginal livers, machine perfusion is being explored as an alternative. The objective of this study was to assess (dual) hypothermic oxygenated machine perfusion (HOPE/D-HOPE) and normothermic machine perfusion (NMP) in contrast to static cold storage (SCS).MethodsThree databases were searched to identify studies about machine perfusion. Graft and patient survival and postoperative complications were evaluated using the random effects model.Resultsthe incidence of biliary complications was lower in HOPE vs. SCS (OR: 0.59, 95% CI: 0.36-0.98, p = 0.04, I2: 0%). There was no significant difference in biliary complications between NMP and SCS (OR: 0.76, 95% CI: 0.41-1.40, p = 0.38, I2: 55%). Graft and patient survival were significantly better in HOPE than in SCS (HR: 0.40, 95% CI: 0.23-0.71, p = 0.002, I2: 0%) and (pooled HR: 0.43, 95% CI: 0.20-0.93, p = 0.03, I2: 0%). Graft and patient survival were not significantly different between NMP and SCS.ConclusionHOPE/D-HOPE and NMP are promising alternatives to SCS for donor liver preservation. They may help address the widening gap between the demand for and availability of donor livers by enabling the rescue and transplantation of marginal livers.
Project description:BackgroundOne of the most promising applications of liver normothermic machine perfusion (NMP) is the potential to directly assess graft viability and injury. In most NMP studies, perfusate transaminases are utilized as markers of graft injury. Our aim was to further elucidate the metabolism of transaminases by healthy porcine livers during NMP, specifically whether such livers could clear circuit perfusate transaminases.MethodsA highly concentrated transaminase solution was prepared from homogenized liver, with an aspartate aminotransferase (AST) level of 107,427 U/L. Three livers in the treatment group were compared to three controls, during 48 hours of NMP. In the treatment group, the circuit perfusate was injected with the transaminase solution to artificially raise the AST level to a target of 7,500 U/L. Perfusate samples were taken at two-hour intervals and analyzed for biochemistry until NMP end. Graft oxygen consumption and vascular parameters were monitored.ResultsCompared to controls, treated perfusions demonstrated abrupt elevations in transaminase levels (p>0.0001) and lactate dehydrogenase (LDH) (p>0.0001), which decreased over time, but never to control baseline. Liver function, as demonstrated by lactate clearance and oxygen consumption was not different between groups. The treatment group demonstrated a higher portal vein resistance (p = 0.0003), however hepatic artery resistance was similar. Treated livers had higher bile production overall (p<0.0001).ConclusionsAddition of high levels of transaminases and LDH to a healthy porcine liver during ex situ perfusion results in progressive clearance of these enzymes, suggesting preserved liver metabolism. Such tolerance tests may provide valuable indicators of prospective graft function.
Project description:Introduction: Ageing of the general population has led to an increase in the use of suboptimal kidneys from expanded criteria donation after brain death (ECD-DBD) and donation after circulatory death (DCD) donors. However, these kidneys have inferior graft outcomes and lower rates of immediate function. Normothermic machine perfusion (NMP) may improve outcomes of these suboptimal donor kidneys. Previous non-randomized studies have shown the safety of this technique and suggested its efficacy in improving the proportion of immediate functioning kidneys compared to static cold storage (SCS). However, its additional value to hypothermic machine perfusion (HMP), which has already been proved superior to SCS, has not yet been established. Methods and analysis: This single-center, open-label, randomized controlled trial aims to assess immediate kidney function after 120 minutes additional, end-ischemic NMP compared to HMP alone. Immediate kidney function is defined as no dialysis treatment in the first week after transplant. Eighty recipients on dialysis at the time of transplant who receive an ECD-DBD or DCD kidney graft are eligible for inclusion. In the NMP group, the donor kidney is taken of HMP upon arrival in the recipient hospital and thereafter put on NMP for 120 minutes at 37 degrees Celsius followed by transplantation. In the control group, donor kidneys stay on HMP until transplantation. The primary outcome is immediate kidney function. Ethics and dissemination: The protocol has been approved by the Medical Ethical Committee of Erasmus Medical Center (2020-0366). Results of this study will be submitted to peer-reviewed journals. Registration: registered in clinicaltrials.gov (NCT04882254). Highlights: This is the first RCT to compare additional NMP to HMP alone. Extensive sampling will offer in-depth analysis of kidney physiology during NMP. This RCT may help identify biomarkers to predict clinical outcomes during NMP. Biomarkers can help develop NMP as assessment tool for declined kidneys.
Project description:BackgroundIn an era where global kidney shortage has pushed the field of transplantation towards using more marginal donors, modified kidney preservation techniques are currently being reviewed. Some techniques require further optimization before implementation in full scale transplantation studies. Using a porcine donation after circulatory death kidney model, we investigated whether initial kidney hemodynamics improved during normothermic machine perfusion if this was preceded by a short period of oxygenated hypothermic machine perfusion (oxHMP) rather than static cold storage (SCS).MethodsKidneys subjected to 75 minutes of warm ischemia were randomly assigned to either SCS (n = 4) or SCS + oxHMP (n = 4), with a total cold storage time of 240 minutes. Cold preservation was followed by 120 minutes of normothermic machine perfusion with continuous measurement of hemodynamic parameters and renal function.ResultsoxHMP preserved kidneys maintained significantly lower renal resistance throughout the normothermic machine perfusion period compared to SCS kidneys (P < 0.001), reaching lowest levels at 60 minutes with means of 0.71 ± 0.35 mm Hg/mL/min/100 g (SCS) and 0.45 ± 0.15 mm Hg/mL/min/100 g (oxHMP). Accordingly, the oxHMP group had a higher mean renal blood flow versus SCS kidneys (P < 0.001). oxHMP kidneys had higher oxygen consumption during normothermic machine perfusion compared to SCS preserved kidneys (P < 0.001). Creatinine clearance remained similar between groups (P = 0.665).ConclusionsPreceding oxHMP significantly improved initial normothermic machine perfusion hemodynamics and increased total oxygen consumption. With the long period of warm ischemia, immediate kidney function was not observed, reflected by the findings of low creatinine clearance in both groups.
Project description:Developing clinically predictive model systems for evaluating gene transfer and gene editing technologies has become increasingly important in the era of personalized medicine. Liver-directed gene therapies present a unique challenge due to the complexity of the human liver. In this work, we describe the application of whole human liver explants in an ex situ normothermic perfusion system to evaluate a set of fourteen natural and bioengineered adeno-associated viral (AAV) vectors directly in human liver, in the presence and absence of neutralizing human sera. Under non-neutralizing conditions, the recently developed AAV variants, AAV-SYD12 and AAV-LK03, emerged as the most functional variants in terms of cellular uptake and transgene expression. However, when assessed in the presence of human plasma containing anti-AAV neutralizing antibodies (NAbs), vectors of human origin, specifically those derived from AAV2/AAV3b, were extensively neutralized, whereas AAV8- derived variants performed efficiently. This study demonstrates the potential of using normothermic liver perfusion as a model for early-stage testing of liver-focused gene therapies. The results offer preliminary insights that could help inform the development of more effective translational strategies.
Project description:BackgroundIn liver transplantation, advances in ex situ normothermic machine perfusion (NMP) have improved outcomes compared with traditional static cold storage (SCS) in donation after circulatory death (DCD) organs. We aimed to characterize trends in the utilization of NMP versus SCS in DCD liver transplantation in the United States.MethodsThis retrospective cohort study used data from the United Network for Organ Sharing database to identify recipient-donor adult liver transplant pairs from DCD donors from January 2016 to June 2022. Utilization of NMP and changes in donor risk index (DRI) and components between NMP and SCS were assessed across transplant year eras (2016-2018, 2019-2020, and 2021-2022). Statistical comparisons were made using the Kruskal-Wallis test or the chi-square test.ResultsA total of 3937 SCS and 127 NMP DCD donor transplants were included. Utilization of NMP ranged from ~0.4% to 3.5% from 2016 to 2021 and rose significantly to 11.2% in early 2022. Across transplant eras, median DRI increased significantly for SCS and NMP, but the magnitude of the increase was larger for NMP. With NMP DCDs, there were significant increases in median donor age, national share proportion, and "cold ischemic time" over time. Finally, there was a shift toward including higher DRI donors and higher model for end-stage liver disease score transplant recipients with NMP in later transplant eras.ConclusionsIn recent years, NMP utilization has increased and expanded to donors with higher DRI and recipients with higher model for end-stage liver disease score at transplant, suggesting increasing familiarity and risk tolerance with NMP technology. As NMP remains a relatively new technique, ongoing study of patient outcomes, organ allocation practices, and utilization patterns is critical.
Project description:BackgroundNormothermic regional perfusion (NRP) and hypothermic-oxygenated-perfusion (HOPE), were both shown to improve outcomes after liver transplantation from donors after circulatory death (DCD). Comparative clinical and mechanistical studies are however lacking.MethodsA rodent model of NRP and HOPE, both in the donor, was developed. Following asystolic donor warm ischemia time (DWIT), the abdominal compartment was perfused either with a donor-blood-based-perfusate at 37 °C (NRP) or with oxygenated Belzer-MPS at 10 °C (donor-HOPE) for 2 h. Livers were then procured and underwent 5 h static cold storage (CS), followed by transplantation. Un-perfused and HOPE-treated DCD-livers (after CS) and healthy livers (DBD) with direct implantation after NRP served as controls. Endpoints included the entire spectrum of ischemia-reperfusion-injury.FindingsHealthy control livers (DBD) showed minimal signs of inflammation during 2 h NRP and achieved 100% posttransplant recipient survival. In contrast, DCD livers with 30 and 60 min DWIT suffered from greater mitochondrial injury and inflammation as measured by increased perfusate Lactate, FMN- and HMGB-1-levels with subsequent Toll-like-receptor activation during NRP. In contrast, donor-HOPE (instead of NRP) led to significantly less mitochondrial-complex-I-injury and inflammation. Results after donor-HOPE were comparable to ex-situ HOPE after CS. Most DCD-liver recipients survived when treated with one HOPE-technique (86%), compared to only 40% after NRP (p = 0.0053). Following a reduction of DWIT (15 min), DCD liver recipients achieved comparable survivals with NRP (80%).InterpretationHigh-risk DCD livers benefit more from HOPE-treatment, either immediately in the donor or after cold storage. Comparative prospective clinical studies are required to translate the results.FundingFunding was provided by the Swiss National Science Foundation (grant no: 32003B-140776/1, 3200B-153012/1, 320030-189055/1, and 31IC30-166909) and supported by University Careggi (grant no 32003B-140776/1) and the OTT (grant No.: DRGT641/2019, cod.prog. 19CT03) and the Max Planck Society. Work in the A.G. laboratory was partially supported by the NIH R01NS112381 and R21NS125466 grants.
Project description:There is a significant organ shortage in the field of liver transplantation, partly due to a high discard rate of steatotic livers from donors. These organs are known to function poorly if transplanted but make up a significant portion of the available pool of donated livers. This study demonstrates the ability to improve the function of steatotic rat livers using a combination of ex situ machine perfusion and a "defatting" drug cocktail. After 6 hours of perfusion, defatted livers demonstrated lower perfusate lactate levels and improved bile quality as demonstrated by higher bile bicarbonate and lower bile lactate. Furthermore, defatting was associated with decreased gene expression of pro-inflammatory cytokines and increased expression of enzymes involved in mitochondrial fatty acid oxidation. Rehabilitation of marginal or discarded steatotic livers using machine perfusion and tailored drug therapy can significantly increase the supply of donor livers for transplantation.
Project description:There continues to be a significant shortage of donor livers for transplantation. One impediment is the discard rate of fatty, or steatotic, livers because of their poor post-transplant function. Steatotic livers are prone to significant ischemia-reperfusion injury (IRI) and data regarding how best to improve the quality of steatotic livers is lacking. Herein, we use normothermic (37°C) machine perfusion in combination with metabolic and lipidomic profiling to elucidate deficiencies in metabolic pathways in steatotic livers, and to inform strategies for improving their function. During perfusion, energy cofactors increased in steatotic livers to a similar extent as non-steatotic livers, but there were significant deficits in anti-oxidant capacity, efficient energy utilization, and lipid metabolism. Steatotic livers appeared to oxidize fatty acids at a higher rate but favored ketone body production rather than energy regeneration via the tricyclic acid cycle. As a result, lactate clearance was slower and transaminase levels were higher in steatotic livers. Lipidomic profiling revealed ?-3 polyunsaturated fatty acids increased in non-steatotic livers to a greater extent than in steatotic livers. The novel use of metabolic and lipidomic profiling during ex situ normothermic machine perfusion has the potential to guide the resuscitation and rehabilitation of steatotic livers for transplantation.