Unknown

Dataset Information

0

LIGHT (TNFSF14) promotes the differentiation of human bone marrow-derived mesenchymal stem cells into functional hepatocyte-like cells.


ABSTRACT: Liver transplantation is the most effective treatment option for patients with acute or chronic liver failure. However, the applicability and effectiveness of this modality are often limited by a shortage of donors, surgical complications, high medical costs, and the need for continuing immunosuppressive therapy. An alternative approach is liver cell transplantation. LIGHT (a member of the tumor necrosis factor superfamily) could be a promising candidate for promoting the differentiation of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) into hepatocyte-like cells. In this study, we investigated the effect of LIGHT on hBM-MSC differentiation into hepatocyte-like cells. Our previous results showed that LIGHT receptor lymphotoxin-β receptor (LTβR) is constitutively expressed on the surface of hBM-MSCs. Upon treatment with recombinant human LIGHT (rhLIGHT), the phenotype of hBM-MSCs changed to round or polygonal cells. In addition, the cells exhibited high levels of hepatocyte-specific markers, including albumin, cytokeratin-18 (CK-18), CK-19, cytochrome P450 family 1 subfamily A member 1 (CYP1A1), CYP1A2, CYP3A4, SRY-box transcription factor 17 (SOX17), and forkhead box A2 (FOXA2). These results indicate that rhLIGHT enhances the differentiation of hBM-MSCs into functional hepatocyte-like cells. Furthermore, rhLIGHT-induced hepatocyte-like cells showed a higher ability to store glycogen and uptake indocyanine green compared with control cells, indicating functional progression. Additionally, treatment with rhLIGHT increased the number, viability, and proliferation of cells by inducing the S/G2/M phase and upregulating the expression of various cyclin and cyclin dependent kinase (CDK) proteins. We also found that the hepatogenic differentiation of hBM-MSCs induced by rhLIGHT was mediated by the activation of signal transducer and activator of transcription 3 (STAT3) and STAT5 pathways. Overall, our findings suggest that LIGHT plays an essential role in promoting the hepatogenic differentiation of hBM-MSCs. Hence, LIGHT may be a valuable factor for stem cell therapy.

SUBMITTER: Heo SK 

PROVIDER: S-EPMC10411951 | biostudies-literature | 2023

REPOSITORIES: biostudies-literature

altmetric image

Publications

LIGHT (TNFSF14) promotes the differentiation of human bone marrow-derived mesenchymal stem cells into functional hepatocyte-like cells.

Heo Sook-Kyoung SK   Yu Ho-Min HM   Kim Do Kyoung DK   Seo Hye Jin HJ   Shin Yerang Y   Kim Sung Ah SA   Kim Minhui M   Kim Youjin Y   Lee Yoo Jin YJ   Noh Eui-Kyu EK   Jo Jae-Cheol JC  

PloS one 20230808 8


Liver transplantation is the most effective treatment option for patients with acute or chronic liver failure. However, the applicability and effectiveness of this modality are often limited by a shortage of donors, surgical complications, high medical costs, and the need for continuing immunosuppressive therapy. An alternative approach is liver cell transplantation. LIGHT (a member of the tumor necrosis factor superfamily) could be a promising candidate for promoting the differentiation of huma  ...[more]

Similar Datasets

| S-EPMC7895395 | biostudies-literature
| S-EPMC5106019 | biostudies-literature
| S-EPMC11344058 | biostudies-literature
| S-EPMC7933275 | biostudies-literature
| S-EPMC5776773 | biostudies-literature
| S-EPMC7797993 | biostudies-literature
| S-EPMC2897018 | biostudies-literature
| S-EPMC3199873 | biostudies-other
| S-EPMC5787491 | biostudies-literature
| S-EPMC7379496 | biostudies-literature