Project description:Classical Hodgkin lymphomas (cHLs) include small numbers of malignant Reed-Sternberg cells within an extensive but ineffective inflammatory/immune cell infiltrate. In cHL, chromosome 9p24.1/PD-L1/PD-L2 alterations increase the abundance of the PD-1 ligands, PD-L1 and PD-L2, and their further induction through Janus kinase 2-signal transducers and activators of transcription signaling. The unique composition of cHL limits its analysis with high-throughput genomic assays. Therefore, the precise incidence, nature, and prognostic significance of PD-L1/PD-L2 alterations in cHL remain undefined.We used a fluorescent in situ hybridization assay to evaluate CD274/PD-L1 and PDCD1LG2/PD-L2 alterations in 108 biopsy specimens from patients with newly diagnosed cHL who were treated with the Stanford V regimen and had long-term follow-up. In each case, the frequency and magnitude of 9p24.1 alterations-polysomy, copy gain, and amplification-were determined, and the expression of PD-L1 and PD-L2 was evaluated by immunohistochemistry. We also assessed the association of 9p24.1 alterations with clinical parameters, which included stage (early stage I/II favorable risk, early stage unfavorable risk, advanced stage [AS] III/IV) and progression-free survival (PFS).Ninety-seven percent of all evaluated cHLs had concordant alterations of the PD-L1 and PD-L2 loci (polysomy, 5% [five of 108]; copy gain, 56% [61 of 108]; amplification, 36% [39 of 108]). There was an association between PD-L1 protein expression and relative genetic alterations in this series. PFS was significantly shorter for patients with 9p24.1 amplification, and the incidence of 9p24.1 amplification was increased in patients with AS cHL.PD-L1/PD-L2 alterations are a defining feature of cHL. Amplification of 9p24.1 is more common in patients with AS disease and associated with shorter PFS in this series. Further analyses of 9p24.1 alterations in patients treated with standard cHL induction regimens or checkpoint blockade are warranted.
Project description:The glycoprotein CD47 regulates antiphagocytic activity via signal regulatory protein alpha (SIRPa). This study investigated CD47 expression on Hodgkin and Reed-Sternberg (HRS) cells in the classical Hodgkin lymphoma (cHL) tumour microenvironment and its correlation with prognosis, programmed-death (PD) immune markers, and SIRPa+ leukocytes. We conducted immunohistochemistry with CD47 and SIRPa antibodies on diagnostic biopsies (tissue microarrays) from cHL patients from two cohorts (n = 178). In cohort I (n = 136) patients with high expression of CD47 on HRS cells (n = 48) had a significantly inferior event-free survival [hazard ratio (HR) = 5.57; 95% confidence interval (CI), 2.78-11.20; p < 0.001] and overall survival (OS) (HR = 8.54; 95% CI, 3.19-22.90; p < 0.001) compared with patients with low expression (n = 88). The survival results remained statistically significant in multivariable Cox regression adjusted for known prognostic factors. In cohort II (n = 42) high HRS cell CD47 expression also carried shorter event-free survival (EFS) (HR = 5.96; 95% CI, 1.20-29.59; p = 0.029) and OS (HR = 5.61; 95% CI, 0.58-54.15; p = 0.136), although it did not retain statistical significance in the multivariable analysis. Further, high CD47 expression did not correlate with SIRPa+ leukocytes or PD-1, PD-L1 and PD-L2 expression. This study provides a deeper understanding of the role of CD47 in cHL during an era of emerging CD47 therapies.
Project description:PD-1/PD-L1 is an important signaling pathway in the adaptive immune system. The CD47/SIRPα signaling pathway is a crucial "do not eat me" signal for innate immunity. This study evaluated the anti-tumor mechanism of IMM2520 in vitro and in vivo. IMM2520 was generated using the "mab-trap" platform. IMM2520 showed high affinity to PD-L1 and relatively lower affinity to CD47, displaying preferential binding to PD-L1 on tumor cells. IMM2520 had the potent ability to inhibit the PD-1/PD-L1 and CD47/SIRPα signaling pathways and killed tumor cells through ADCC and ADCP. Importantly, IMM2520 did not bind to human red blood cells or induce erythrocyte agglutination. IMM2520 demonstrated a tendency to bind to CD47+/PD-L1+ tumor cells, reducing its binding to CD47 single-positive cells. In mouse transplantation models, compared with the first-generation CD47/PD-L1 BsAb (IMM2505), IMM2520 exhibited stronger and dose-dependent antitumor activity. These findings imply that IMM2520 may offer a novel therapeutic alternative for cancer patients.
Project description:High expression of programmed death receptor 1 (PD-1) and its ligand (PD-L1) by leukocytes in primary classical Hodgkin lymphoma (cHL) is associated with inferior outcome. However, it is unclear how expression varies during disease progression, and in the event of relapse. Our aim was to study PD-1 and PD-L1 in consecutive biopsies from untreated and treated cHL patients. We screened pathology registries from 3500 cHL patients. Eleven patients had a diagnostic cHL biopsy and a previous benign lymph node biopsy reclassified as cHL when reviewed and designated as the untreated. Thirty patients had a primary and a relapse biopsy, designated as the treated. Biopsies were immunostained to detect PD-1+ and PD-L1+ leukocytes, and PD-L1+ tumor cells. In the untreated, none of the markers were statistically significantly different when biopsies 1 and 2 were compared. In the treated, 19, 22, and 18 of 30 cases had increased proportions of PD-1+ leukocytes, PD-L1+ leukocytes and PD-L1+ tumor cells, respectively, and were all statistically significantly increased when primary and relapse biopsies were compared. PD-1 and PD-L1 most likely increase due to primary treatment with chemotherapy and radiotherapy, which could have implications regarding treatment with PD-1 inhibitors.
Project description:Treatment with programmed death-1 (PD-1) blocking antibodies results in high overall response rates in refractory and relapsed classical Hodgkin lymphoma (cHL) patients, indicating that PD-1/PD-1 ligand interactions are integral to progression of this disease. Given the genetically driven increased PD-L1/2 expression in HL, we hypothesized that reverse signaling through PD-1 ligands may be a potential mechanism contributing to the growth and survival of Hodgkin Reed-Sternberg (HRS) cells in cHL. Our data show that engagement of PD-L1 using an agonistic monoclonal antibody increases cell survival and proliferation and reduces apoptosis in HL cell lines. We show that HL patients have significantly higher serum levels of soluble PD-1 than healthy controls, and find that both membrane-bound and soluble forms of PD-1 are able to induce PD-L1 reverse signaling in HL cell lines. PD-L1 signaling, which is associated with activation of the MAPK pathway and increased mitochondrial oxygen consumption, is reversed by PD-1 blockade. In summary, our data identify inhibition of reverse signaling through PD-L1 as an additional mechanism that accounts for clinical responses to PD-1 blockade in cHL.
Project description:Background: Even though PD-1/PD-L1 is an identified key "don't find me" signal to active adaptive immune system for cancer treatment, the overall response rate (ORR) for all cancer patients is still limited. Other effective therapeutic modalities to bridge the innate and adaptive immunity to improve ORR are urgently needed. Recently, CD47/SIRPα interaction is confirmed as a critical "don't eat me" signal to active innate immunity. However, the red blood cell (RBC) toxicity is the big concern for the development of CD47-based anti-cancer therapeutics. Methods: Here, we report the development of a CD47/PD-L1 bispecific antibody 6MW3211 to block both PD-1/PD-L1 and CD47/SIRPα signals, and studied the effects of 6MW3211 on anti-tumor immune functions in vitro and in vivo. The pharmacokinetic and toxicity profiles of 6MW3211 were evaluated in GLP non-human primate (NHP) studies. Results: The dual immune checkpoint inhibitory signaling blocker 6MW3211 shows high binding affinity to PD-L1 and low binding affinity to CD47. This inequivalent binding affinity design makes 6MW3211 preferentially bound to PD-L1 on tumor cells followed by disrupting the interaction of CD47/SIRPα. Complex structure determination and flow cytometry assay demonstrated that 6MW3211 has no binding to either human or rhesus monkey RBCs. 6MW3211 effectively blocked both PD-1/DP-L1 and CD47/SIRPα signaling and promoted macrophage phagocytosis of tumor cells. Potent therapeutic efficacies of 6MW3211 in three different mouse models were further observed. Moreover, 6MW3211 was demonstrated to have a fairly good safety profile in a GLP NHP study. In addition, multiplex fluorescent immunohistochemistry (mIHC) staining shows that PD-L1 and CD47 co-express on several different types of human tumor tissues. Conclusions: These results support the development of 6MW3211 for the treatment of PD-L1 and CD47 double positive cancers.
Project description:Hodgkin lymphoma (HL) is a neoplastic disease in which the inflammatory microenvironment plays a pivotal role in the tumorigenesis. Neutrophilia is a typical finding in HL at diagnosis and, in particular, in association with lymphocytopenia, is a negative prognostic factor. As the immune checkpoint Programmed Death (PD)-L1/PD-1 has become an important therapeutic target, we were interested in the expression of PD-L1 in peripheral blood (PB) leukocytes using flow cytometry and RT-PCR in patients with HL and healthy controls. Granulocytes were the major PB cell fraction expressing PD-L1. PD-L1 expression on granulocytes was higher in patients with HL than in controls and correlated with lower T-cell numbers in PB. We analyzed for associations between PD-L1 expression in PB granulocytes at the time of diagnosis with patient characteristics and outcome in 126 patients with HL treated with standard chemotherapy adriamycin, bleomycin, vinblastine, and dacarbazine. Increased PD-L1 expression in PB associated with advanced disease, systemic symptoms, positive interim positron emission tomography, and inferior progression-free survival (PFS). PFS at 4 years was 81% (95% C.I., 71-87%) in patients with normal PD-L1 expression and 56% (95% C.I., 35-72%) in patients with higher-than-normal PD-L1 expression (p = 0.002). In conclusion, PD-L1 expression in PB could become a potentially actionable prognostic factor in HL.
Project description:PurposeWe sought to understand the clinical course and molecular phenotype of patients who showed disease progression after programmed cell death ligand 1 (PD-L1) inhibitor treatment but subsequently responded to PD-1 inhibitor treatment. We also explored the response to PD-1-axis targeted therapy of classical Hodgkin lymphoma (cHL) according to genetically driven PD-L1 and programmed cell death ligand 2 (PD-L2) expression.MethodsFive patients in a phase II clinical trial of CS1001 (PD-L1 inhibitor) for relapsed or refractory (R/R) cHL were retrospectively reviewed. Formalin-fixed, paraffin-embedded whole tissues from the five patients were evaluated for 9p24.1 genetic alterations based on FISH and the expression of PD-L1, PD-L2, PD-1, major histocompatibility complex (MHC) class I-II, and the tumor microenvironment factorsCD163 and FOXP3 in the microenvironmental niche, as revealed by multiplex immunofluorescence.ResultsAll five patients showed primary refractory disease during first-line treatment. Four patients received PD-1 inhibitor after dropping out of the clinical trial, and all demonstrated at least a partial response. The progression-free survival ranged from 7 to 28 months (median = 18 months), and 9p24.1 amplification was observed in all five patients at the PD-L1/PD-L2 locus. PD-L1 and PD-L2 were colocalized on Hodgkin Reed-Sternberg (HRS) cells in four of the five (80%) patients. There was differential expression of PD-L1 and PD-L2 in cells in the tumor microenvironment in cHL, especially in HRS cells, background cells and tumor-associated macrophages.ConclusionsPD-L1 monotherapy may not be sufficient to block the PD-1 pathway; PD-L2 was expressed in HRS and background cells in cHL. The immunologic function of the PD-L2 pathway in anti-tumor activity may be underestimated in R/R cHL. Further study is needed to elucidate the anti-tumor mechanism of PD-1 inhibitor and PD-L1 inhibitor treatment.
Project description:This is a multi-center, open-label, dose-escalation and cohort-expansion phase I clinical study to evaluate the safety and tolerability, pharmacokinetics profile, efficacy and immunogenicity of IMM2520 in subjects with advanced solid tumors.
Project description:Non-Hodgkin lymphoma (NHL) presents as both localized and disseminated disease with spread to secondary sites carrying a worse prognosis. Although pathways driving NHL dissemination have been identified, there are few therapies capable of inhibiting them. Here, we report a novel role for the immunomodulatory protein CD47 in NHL dissemination, and we demonstrate that therapeutic targeting of CD47 can prevent such spread. We developed 2 in vivo lymphoma metastasis models using Raji cells, a human NHL cell line, and primary cells from a lymphoma patient. CD47 expression was required for Raji cell dissemination to the liver in mouse xenotransplants. Targeting of CD47 with a blocking antibody inhibited Raji cell dissemination to major organs, including the central nervous system, and inhibited hematogenous dissemination of primary lymphoma cells. We hypothesized that anti-CD47 antibody-mediated elimination of circulating tumor cells occurred through phagocytosis, a previously described mechanism for blocking anti-CD47 antibodies. As predicted, inhibition of dissemination by anti-CD47 antibodies was dependent on blockade of phagocyte SIRP? and required macrophage effector cells. These results demonstrate that CD47 is required for NHL dissemination, which can be therapeutically targeted with a blocking anti-CD47 antibody. Ultimately, these findings are potentially applicable to the dissemination and metastasis of other solid tumors.