Project description:AbstractMolecular failure in NPM1-mutated acute myeloid leukemia (AML) inevitably progresses to frank relapse if untreated. Recently published small case series show that venetoclax combined with low-dose cytarabine or azacitidine can reduce or eliminate measurable residual disease (MRD). Here, we report on an international multicenter cohort of 79 patients treated for molecular failure with venetoclax combinations and report an overall molecular response (≥1-log reduction in MRD) in 66 patients (84%) and MRD negativity in 56 (71%). Eighteen of 79 patients (23%) required hospitalization, and no deaths were reported during treatment. Forty-one patients were bridged to allogeneic transplant with no further therapy, and 25 of 41 were MRD negative assessed by reverse transcription quantitative polymerase chain reaction before transplant. Overall survival (OS) for the whole cohort at 2 years was 67%, event-free survival (EFS) was 45%, and in responding patients, there was no difference in survival in those who received a transplant using time-dependent analysis. Presence of FLT3-ITD mutation was associated with a lower response rate (64 vs 91%; P < .01), worse OS (hazard ratio [HR], 2.50; 95% confidence interval [CI], 1.06-5.86; P = .036), and EFS (HR, 1.87; 95% CI, 1.06-3.28; P = .03). Eighteen of 35 patients who did not undergo transplant became MRD negative and stopped treatment after a median of 10 months, with 2-year molecular relapse free survival of 62% from the end of treatment. Venetoclax-based low intensive chemotherapy is a potentially effective treatment for molecular relapse in NPM1-mutated AML, either as a bridge to transplant or as definitive therapy.
Project description:The venetoclax BCL2 inhibitor in combination with hypomethylating agents represents a cornerstone of induction therapy for older AML patients, unfit for intensive chemotherapy. Like other targeted therapies, venetoclax-based therapies suffer from innate and acquired resistance. While several mechanisms of resistance have been identified, the heterogeneity of resistance mechanism across patient populations is poorly understood. Here we utilized integrative analysis of transcriptomic and ex-vivo drug response data in AML patients to identify four transcriptionally distinct VEN resistant clusters (VR_C1-4), with distinct phenotypic, genetic and drug response patterns. VR_C1 was characterized by enrichment for differentiated monocytic- and cDC-like blasts, transcriptional activation of PI3K-AKT-mTOR signaling axis, and energy metabolism pathways. They showed sensitivity to mTOR and CDK inhibition. VR_C2 was enriched for NRAS mutations and associated with distinctive transcriptional suppression of HOX expression. VR_C3 was characterized by enrichment for TP53 mutations and higher infiltration by cytotoxic T cells. This cluster showed transcriptional expression of erythroid markers, suggesting tumor cells mimicking erythroid differentiation, activation of JAK-STAT signaling, and sensitivity to JAK inhibition, which in a subset of cases synergized with venetoclax. VR_C4 shared transcriptional similarities with venetoclax-sensitive patients, with modest over-expression of interferon signaling. They were also characterized by high rates of DNMT3A mutations. Finally, we projected venetoclax-resistance states onto single cells profiled from a patient who relapsed under venetoclax therapy capturing multiple resistance states in the tumor and shifts in their abundance under venetoclax selection, suggesting that single tumors may consist of cells mimicking multiple VR_Cs contributing to intra-tumor heterogeneity. Taken together, our results provide a strategy to evaluate inter- and intra-tumor heterogeneity of venetoclax resistance mechanisms and provide insights into approaches to navigate further management of patients who failed therapy with BCL2 inhibitors.
Project description:Monosomy 5 and deletions of the chromosome 5q (-5/del(5q)) are recurrent events in de novo adult acute myeloid leukemia (AML), reaching up to 40% of cases in secondary AML. These chromosome anomalies are associated with TP53 mutations and with very poor prognosis. Using the large Leucegene genomic and transcriptomic dataset composed of 48 -5/del(5q) patient specimens and 367 control AML, we identified DELE1 - located in the common deleted region - as the most consistently downregulated gene in these leukemias. DELE1 encodes a mitochondrial protein recently characterized as the relay of mitochondrial stress to the cytosol through a newly defined OMA1-DELE1-HRI pathway which ultimately leads to the activation of ATF4, the master transcription factor of the integrated stress response. Here, we showed that the partial loss of DELE1 expression observed in -5/del(5q) patients was sufficient to significantly reduce the sensitivity to mitochondrial stress in AML cells. Overall, our results suggest that DELE1 haploinsufficiency could represent a new driver mechanism in -5/del(5q) AML.
Project description:Forkhead box protein M1 (FOXM1) is a crucial regulator of cancer development and chemoresistance. It is often overexpressed in acute myeloid leukemia (AML) and is associated with poor survival and reduced efficacy of cytarabine therapy. Molecular mechanisms underlying high FOXM1 expression levels in malignant cells are still unclear. Here we demonstrate that AKT and FOXM1 constitute a positive autoregulatory loop in AML cells that sustains high activity of both pro-oncogenic regulators. Inactivation of either AKT or FOXM1 signaling results in disruption of whole loop, coordinated suppression of FOXM1 or AKT, respectively, and similar transcriptomic changes. AML cells with inhibited AKT activity or stable FOXM1 knockdown display increase in HOXA genes expression and BCL2L1 suppression that are associated with prominent sensitization to treatment with Bcl-2 inhibitor venetoclax. Taken together, our data indicate that AKT and FOXM1 in AML cells should not be evaluated as single independent regulators but as two parts of a common FOXM1-AKT positive feedback circuit. We also report for the first time that FOXM1 inactivation can overcome AML venetoclax resistance. Thus, targeting FOXM1-AKT loop may open new possibilities in overcoming AML drug resistance and improving outcomes for AML patients.