Project description:Pacritinib (SB1518) is a Janus kinase 2 (JAK2), JAK2(V617F), and Fms-like tyrosine kinase 3 inhibitor that does not inhibit JAK1. It demonstrated a favorable safety profile with promising efficacy in phase 1 studies in patients with primary and secondary myelofibrosis (MF). This multicenter phase 2 study further characterized the safety and efficacy of pacritinib in the treatment of patients with MF. Eligible patients had clinical splenomegaly poorly controlled with standard therapies or were newly diagnosed with intermediate- or high-risk Lille score. Patients with any degree of cytopenia were eligible. Thirty-five patients were enrolled. At entry, 40% had hemoglobin <10 g/dL and 43% had platelets <100 000× 10(9)/L. Up to week 24, 8 of 26 evaluable patients (31%) achieved a ≥35% decrease in spleen volume determined by magnetic resonance imaging and 14 of 33 (42%) attained a ≥50% reduction in spleen size by physical examination. Median MF symptom improvement was ≥50% for all symptoms except fatigue. Grade 1 or 2 diarrhea (69%) and nausea (49%) were the most common treatment-emergent adverse events. The study drug was discontinued in 9 patients (26%) due to adverse events (4 severe). Pacritinib is an active agent in patients with MF, offering a potential treatment option for patients with preexisting anemia and thrombocytopenia. This trial was registered at www.clinicaltrials.gov as #NCT00745550.
Project description:BackgroundPacritinib (SB1518) is a highly selective kinase inhibitor with specificity for JAK2, FLT3, IRAK1, and CFS1R. This multicenter phase 1/2 study evaluated the maximum tolerated dose (MTD), safety, and clinical activity of pacritinib in patients with myelofibrosis (MF) and other advanced myeloid malignancies.MethodsIn the phase 1 dose-escalation part of the study, 43 adults with advanced myeloid malignancies received pacritinib 100 to 600 mg once daily (QD). In the phase 2 part of the study, 31 adults with refractory or intermediate- or high-risk newly diagnosed MF and any degree of cytopenia received pacritinib 400 mg QD. The primary endpoint is a ≥35% reduction in spleen volume at week 24 as determined by magnetic resonance imaging.ResultsFive patients (11.6%) experienced a dose-limiting toxicity during cycle 1 of phase 1. The clinical benefit rate was 86.0% (13 patients achieving clinical improvement and 24 patients having stable disease). The MTD was established at 500 mg QD, and the recommended phase 2 dose was 400 mg QD. In phase 2, the primary endpoint was achieved by 23.5% of evaluable patients (4/17), with 47.4% (9/19) achieving a ≥50% spleen length reduction at week 24 as measured by physical examination. At week 24, 38.9% of evaluable patients (7/18) achieved a ≥50% decrease in MF Quality of Life and Symptom Assessment total score. Gastrointestinal toxicities were the most common adverse events and were predominantly grade 1/2 in severity. Grade 3/4 anemia was reported in 5/31 patients and grade 3/4 thrombocytopenia was reported in 3/31 patients. The most frequent AEs considered to be treatment related were diarrhea (28/31), nausea (15/31), vomiting (9/31), and fatigue (4/31). Grade 3 treatment-related AEs were reported in seven patients (22.6%), four of whom had diarrhea. No grade 4/5 treatment-related AEs were reported. No leukopenia, neutropenia, or lymphopenia were reported.ConclusionsPacritinib was well tolerated and demonstrated clinical activity in MF. The study suggests that pacritinib has unique characteristics, namely a lack of substantial myelosuppression and manageable side effects, making it an attractive target for further evaluation in MF.Trial registrationRetrospectively registered at www.clinicaltrials.gov (# NCT00719836 ) on July 20, 2008.
Project description:Myelofibrosis (MF) is a myeloid malignancy associated with a heavy symptomatic burden that decreases quality of life and presents a risk for leukemic transformation. While there are limited curative treatments, the recent discovery of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway dysregulation has led to many clinical investigations for new treatment approaches. This review provides practical knowledge on the disease state, an overview of treatment options, and specifically focuses on the efficacy and safety of pacritinib in the management of MF. Pacritinib is a novel selective inhibitor of JAK2 and FMS-related tyrosine kinase 3 (FLT3) currently in Phase III trials for the treatment of MF. Thus far, studies have demonstrated clinical efficacy in reducing splenomegaly and constitutional symptoms. Common adverse events were gastrointestinal in nature, while hematologic toxicity was limited. However, it was announced that all ongoing clinical trials on pacritinib have been placed on hold by the US Food and Drug Administration in February 2016, due to concerns for increased intracranial hemorrhage and cardiac events. With comprehensive risk-benefit analysis of clinical trial data, the utility of pacritinib in the management of MF may be more clearly defined.
Project description:Interleukin-1β (IL-1β) is a master regulator of inflammation. Increased activity of IL-1β has been implicated in various pathological conditions including myeloproliferative neoplasms (MPNs). Here we show that IL-1β serum levels and expression of IL-1 receptors on hematopoietic progenitors and stem cells correlate with JAK2-V617F mutant allele fraction in peripheral blood of patients with MPN. We show that the source of IL-1β overproduction in a mouse model of MPN are JAK2-V617F expressing hematopoietic cells. Knockout of IL-1β in hematopoietic cells of JAK2-V617F mice reduces inflammatory cytokines, prevents damage to nestin-positive niche cells and reduces megakaryopoiesis, resulting in decrease of myelofibrosis and osteosclerosis. Inhibition of IL-1β in JAK2-V617F mutant mice by anti-IL-1β antibody also reduces myelofibrosis and osteosclerosis and shows additive effects with ruxolitinib. These results suggest that inhibition of IL-1β with anti-IL-1β antibody alone or in combination with ruxolitinib could have beneficial effects on the clinical course in patients with myelofibrosis.
Project description:Myelofibrosis (MF) is a myeloproliferative neoplasm characterized by ineffective clonal hematopoiesis, splenomegaly, bone marrow fibrosis, and the propensity for transformation to acute myeloid leukemia. The discovery of mutations in JAK2, CALR, and MPL have uncovered activated JAK-STAT signaling as a primary driver of MF, supporting a rationale for JAK inhibition. However, JAK inhibition alone is insufficient for long-term remission and offers modest, if any, disease-modifying effects. Given this, there is great interest in identifying mechanisms that cooperate with JAK-STAT signaling to predict disease progression and rationally guide the development of novel therapies. This review outlines the latest discoveries in the biology of MF, discusses current clinical management of patients with MF, and summarizes the ongoing clinical trials that hope to change the landscape of MF treatment.
Project description:Recent results have shown that myeloproliferative neoplasms (MPN) are strongly associated with constitutive activation of the Janus-activated kinase (JAK)2 tyrosine kinase. However, JAK2 inhibitors currently approved or under development for treating myeloproliferative neoplasms do not selectively deplete the malignant clone, and the inhibition of activity of the drug target (JAK2) has not been rigorously evaluated in the clinical studies. Therefore, in this study we developed an in vitro assay to gain insight into how effectively JAK2 activity is inhibited in the samples of patients.We treated primary cells from normal donors and patients with MPN with JAK2 inhibitors and measured phosphorylation of downstream targets STAT5 and STAT3 by flow cytometry. Obtained results were next correlated with JAK2 V617F allele burden and plasma cytokine level.We observed a dose-dependent decrease in pSTAT5 and pSTAT3 in ex vivo treated granulocytes. However, phosphorylation of STAT3 and STAT5 in cells from patients with myelofibrosis was significantly less inhibited when compared with cells from patients with polycythemia vera, essential thrombocythemia, and normal donors. Sensitivity to inhibition did not correlate with JAK2 V617F clonal burden. Mixing studies using plasma from patients with myelofibrosis did not transfer resistance to sensitive cells. Likewise, no single cytokine measured seemed to account for the observed pattern of resistance.Taken together, these observations suggest that there are cell intrinsic mechanisms that define a priori resistance to JAK2 inhibition in myelofibrosis, and the lesion is localized upstream of STAT3 and STAT5.
Project description:Myelofibrosis (MF) has heterogeneous clinical manifestations, with some patients exhibiting a myelodepletive phenotype characterized by cytopenias and an absent or low JAK2V617F allele burden. Ruxolitinib may be less effective in these patients. We assessed the efficacy of pacritinib, a JAK2/IRAK1 inhibitor, in MF patients with low JAK2V617F allele burden. In this post hoc analysis of the PERSIST-1 and -2 trials, patients with MF randomized to pacritinib or best available therapy (BAT) were stratified by JAK2V617F allele burden quartile for spleen response of ≥35% and improvement in total symptom score of ≥50%. Five hundred thirty-six patients were included. Patients with lower JAK2V617F allele burden had smaller baseline spleens and lower hemoglobin and platelet counts as compared with higher allele burden patients. Among pacritinib-treated patients, spleen responses were observed across all JAK2V617F allele burden quartiles and in JAK2V617F- disease. No spleen responses were observed among BAT-treated patients with allele burden ≤50% or JAK2V617F- disease. The intention-to-treat response rate was significantly higher on the pacritinib arm for JAK2V617F- disease (23.0% vs 0%; P = .033), and for the lowest allele burden quartiles (0%-25%: 20.9% vs 0%, P < .001; 25%-50%: 15.4% vs 0%, P = .020). There were significantly more symptom responders with pacritinib vs BAT in the 0% to 25% and 25% to 50% cohorts. Pacritinib treatment led to superior spleen and symptom burden reduction compared with BAT in patients with absent or low JAK2V617F allele burden, suggesting that pacritinib may be uniquely suited for patients with myelodepletive MF.
Project description:In patients with cytopenic myelofibrosis, treatment with the JAK2/IRAK1 inhibitor pacritinib was associated with anemia benefit in the phase 3 PERSIST-2 study. The impact of pacritinib on transfusion independence (TI) has not been previously described, nor has the mechanism by which pacritinib improves anemia been elucidated. Because it has been previously postulated that inhibition of activin A receptor, type 1 (ACVR1)/activin receptor-like kinase-2 improves anemia in patients with myelofibrosis via suppression of hepcidin production, we assessed the relative inhibitory potency of pacritinib compared with other JAK2 inhibitors against ACVR1. Pacritinib inhibited ACVR1 with greater potency (half-maximal inhibitory concentration [IC50] = 16.7 nM; Cmax:IC50 = 12.7) than momelotinib (IC50 = 52.5 nM; Cmax:IC50 = 3.2), fedratinib (IC50 = 273 nM; Cmax:IC50 = 1.0), or ruxolitinib (IC50 > 1000; Cmax:IC50 < 0.01). Pacritinib's inhibitory activity against ACVR1 was corroborated via inhibition of downstream SMAD signaling in conjunction with marked suppression of hepcidin production. Among patients on PERSIST-2 who were not transfusion independent at baseline based on Gale criteria, a significantly greater proportion achieved TI on pacritinib compared with those treated on best available therapy (37% vs 7%, P = .001), and significantly more had a ≥50% reduction in transfusion burden (49% vs 9%, P < .0001). These data indicate that the anemia benefit of the JAK2/IRAK1 inhibitor pacritinib may be a function of potent ACVR1 inhibition.
Project description:Macrophages promote an early host response to infection by releasing pro-inflammatory cytokines such as interleukin (IL) 1β (IL-1β), tumour necrosis factor (TNF), and IL-6. One of the mechanisms through which cells sense pathogenic microorganisms is through Toll-like receptors (TLRs). IL-1 receptor-associated kinase (IRAK) 1, IRAK2, IRAK3, and IRAK4 are integral to TLR and IL-1 receptor signalling pathways. Recent studies suggest a role for aberrant TLR8 and NLRP3 inflammasome activation during both COVID-19 and HIV-1 infection. Here, we show that pacritinib inhibits the TLR8-dependent pro-inflammatory cytokine response elicited by GU-rich single-stranded RNA derived from SARS-CoV-2 and HIV-1. Using genetic and pharmacologic inhibition, we demonstrate that pacritinib inhibits IRAK1 phosphorylation and ubiquitination which then inhibits the recruitment of the TAK1 complex to IRAK1, thus inhibiting the activation of downstream signalling and the production of pro-inflammatory cytokines.
Project description:FMS-like tyrosine kinase 3 (FLT3) is the most commonly mutated gene found in acute myeloid leukemia (AML) patients and its activating mutations have been proven to be a negative prognostic marker for clinical outcome. Pacritinib (SB1518) is a tyrosine kinase inhibitor (TKI) with equipotent activity against FLT3 (IC(50)=22?n) and Janus kinase 2 (JAK2, IC(50)=23?n). Pacritinib inhibits FLT3 phosphorylation and downstream STAT, MAPK and PI3?K signaling in FLT3-internal-tandem duplication (ITD), FLT3-wt cells and primary AML blast cells. Oral administration of pacritinib in murine models of FLT3-ITD-driven AML led to significant inhibition of primary tumor growth and lung metastasis. Upregulation of JAK2 in FLT3-TKI-resistant AML cells was identified as a potential mechanism of resistance to selective FLT3 inhibition. This resistance could be overcome by the combined FLT3 and JAK2 activities of pacritinib in this cellular model. Our findings provide a rationale for the clinical evaluation of pacritinib in AML including patients resistant to FLT3-TKI therapy.