Project description:Hepatocyte nuclear factor 4 alpha (HNF4?), the master regulator of hepatocyte differentiation, has been recently shown to inhibit hepatocyte proliferation by way of unknown mechanisms. We investigated the mechanisms of HNF4?-induced inhibition of hepatocyte proliferation using a novel tamoxifen (TAM)-inducible, hepatocyte-specific HNF4? knockdown mouse model. Hepatocyte-specific deletion of HNF4? in adult mice resulted in increased hepatocyte proliferation, with a significant increase in liver-to-body-weight ratio. We determined global gene expression changes using Illumina HiSeq-based RNA sequencing, which revealed that a significant number of up-regulated genes following deletion of HNF4? were associated with cancer pathogenesis, cell cycle control, and cell proliferation. The pathway analysis further revealed that c-Myc-regulated gene expression network was highly activated following HNF4? deletion. To determine whether deletion of HNF4? affects cancer pathogenesis, HNF4? knockdown was induced in mice treated with the known hepatic carcinogen diethylnitrosamine (DEN). Deletion of HNF4? significantly increased the number and size of DEN-induced hepatic tumors. Pathological analysis revealed that tumors in HNF4?-deleted mice were well-differentiated hepatocellular carcinoma (HCC) and mixed HCC-cholangiocarcinoma. Analysis of tumors and surrounding normal liver tissue in DEN-treated HNF4? knockout mice showed significant induction in c-Myc expression. Taken together, deletion of HNF4? in adult hepatocytes results in increased hepatocyte proliferation and promotion of DEN-induced hepatic tumors secondary to aberrant c-Myc activation.
Project description:BackgroundHepatocellular carcinoma (HCC), the most common primary liver cancer, prevails mainly in males and has long been attributed to androgens and higher circumstantial levels of interleukin-6 (IL-6) produced by resident hepatic macrophages.MethodsConstitutively hepatocyte-specific histone deacetylase 3 (HDAC3)-deficient (HDAC3LCKO) mice and constitutively hepatocyte-specific HDAC3 knockout and systemic IL-6 simultaneously ablated (HDAC3LCKO& IL-6-/-) mice were used in our study to explore the causes of sex differences in HCC. Additionally, we performed human HCC tissues with an IHC score. Correlation analysis and linear regression plots were constructed to reveal the association between HDAC3 and its candidate genes. To further elucidate that HDAC3 controls the expression of Foxa1/2, we knocked down HDAC3 in HUH7 liver cancer cells.ResultsWe observed a contrary sex disparity, with an earlier onset and higher incidence of HCC in female mice when HDAC3 was selectively ablated in the liver. Loss of HDAC3 led to constant liver injury and the spontaneous development of HCC. Unlike the significant elevation of IL-6 in male mice at a very early age, female mice exhibit stable IL-6 levels, and IL-6 ablation did not eliminate the sex disparity in hepatocarcinogenesis in HDAC3-deficient mice. Oestrogen often protects the liver when combined with oestrogen receptor alpha (ERα); however, ovariectomy in HDAC3-ablated female mice significantly delayed tumourigenesis. The oestrogen-ERα axis can also play a role in tumour promotion in the absence of Foxa1 and Foxa2 in the receptor complex. Loss of HDAC3 profoundly reduced the expression of both Foxa1 and Foxa2 and impaired the binding between Foxa1/2 and ERα. Furthermore, a more frequent HDAC3 decrease accompanied by the simultaneous Foxa1/2 decline was found in female HCC compared to that in male HCC.ConclusionIn summary, we reported that loss of HDAC3 reduces Foxa1/2 and thus promotes HCC development in females in an oestrogen-dependent manner.
Project description:Conditional knockout mice with targeted disruption of B-cell associated protein (BAP)31 in adult mouse liver were generated and challenged with a high-fat diet (HFD) for 36 or 96 days and markers of obesity, diabetes, and hepatic steatosis were determined. Mutant mice were indistinguishable from WT littermates, but exhibited increased HFD-induced obesity. BAP31-deletion in hepatocytes increased the expression of SREBP1C and the target genes, including acetyl-CoA carboxylase 1 and stearoyl-CoA desaturase-1, and increased hepatic lipid accumulation and HFD-induced liver steatosis. Immunoprecipitation assay showed that BAP31 interacts with SREBP1C and insulin-induced gene 1 (INSIG1), and BAP31-deletion reduces INSIG1 expression, suggesting that BAP31 may regulate SREBP1C activity by modulating INSIG1 protein levels. Additionally, BAP31-deletion induced glucose and insulin intolerance, decreased Akt and glycogen synthase kinase 3? phosphorylation, and enhanced hepatic glucose production in mice. Expression of endoplasmic reticulum (ER) stress markers was significantly induced in BAP31-mutant mice. HFD-induced inflammation was aggravated in mutant mice, along with increased c-Jun N-terminal kinase and nuclear factor-?B activation. These findings demonstrate that BAP31-deletion induces SREBP activation and promotes hepatic lipid accumulation, reduces insulin signaling, impairs glucose/insulin tolerance, and increases ER stress and hepatic inflammation, explaining the protective roles of BAP31 in the development of liver steatosis and insulin resistance in HFD-induced obesity in animal models.
Project description:Hepatocyte nuclear factor-4α (HNF4α) is known as the master regulator of hepatocyte differentiation. Recent studies indicate that HNF4α may inhibit hepatocyte proliferation via mechanisms that have yet to be identified. Using a HNF4α knockdown mouse model based on delivery of inducible Cre recombinase via an adeno-associated virus 8 viral vector, we investigated the role of HNF4α in the regulation of hepatocyte proliferation. Hepatocyte-specific deletion of HNF4α resulted in increased hepatocyte proliferation. Global gene expression analysis showed that a majority of the downregulated genes were previously known HNF4α target genes involved in hepatic differentiation. Interestingly, ≥500 upregulated genes were associated with cell proliferation and cancer. Furthermore, we identified potential negative target genes of HNF4α, many of which are involved in the stimulation of proliferation. Using chromatin immunoprecipitation analysis, we confirmed binding of HNF4α at three of these genes. Furthermore, overexpression of HNF4α in mouse hepatocellular carcinoma cells resulted in a decrease in promitogenic gene expression and cell cycle arrest. Taken together, these data indicate that, apart from its role in hepatocyte differentiation, HNF4α actively inhibits hepatocyte proliferation by repression of specific promitogenic genes.
Project description:Fine tuning of the Wnt/?-catenin signaling pathway is essential for the proper development and function of the liver. Aberrant activation of this pathway is observed in 20%-40% of hepatocellular carcinomas (HCC). Notum encodes a secreted Wnt deacylase that inhibits Wnt activity and thereby restricts the zone of activation of Wnt/?-catenin signaling. An important role of NOTUM has been described in development in drosophila, planaria and zebrafish, but its role in the mammalian liver is unknown. Notum is required for spatial control of the Wnt/?-catenin signaling in several animal models and the Wnt/?-catenin pathway contributes to liver patterning involved in metabolic zonation. Therefore, Notum may be involved in the liver patterning induced by the Wnt/?-catenin signaling during the adult stage.We generated a conditional Notum knockout mouse mutant to study the effect of the deletion of Notum in the liver. We show that Notum is a direct target of the Wnt/?-catenin signaling in the liver. Liver-specific deletion of Notum did not modify liver zonation, but Notum deletion had a long-term effect on mouse physiology. In particular, male mutant mice developed metabolic disorders.We show that Notum is not a key actor of Wnt/?-catenin-dependent liver patterning of adult mice, but has role in liver glucose homeostasis. Male mice deficient in Notum specifically in the liver develop metabolic dysfunctions implicating Notum in the development of Type 2 diabetes.
Project description:Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Serine-arginine rich splicing factor 3 (SRSF3) plays a critical role in hepatocyte function and its loss in mice promotes chronic liver damage and leads to HCC. Hepatocyte-specific SRSF3 knockout mice (SKO mice) also overexpress insulin-like growth factor 2 (IGF2). In the present study, double deletion of Igf2 and Srsf3 (DKO mice) prevents hepatic fibrosis and inflammation, and completely prevents tumor formation, and is associated with decreased proliferation, apoptosis and DNA damage, and restored DNA repair enzyme expression. This is confirmed in vitro, where IGF2 treatment of HepG2 hepatoma cells decreases DNA repair enzyme expression and causes DNA damage. Tumors from the SKO mice also show mutational signatures consistent with homologous recombination and mismatch repair defects. Analysis of frozen human samples shows that SRSF3 protein is decreased sixfold in HCC compared to normal liver tissue but SRSF3 mRNA is increased. Looking at public TCGA data, HCC patients having high SRSF3 mRNA expression show poor survival, as do patients with alterations in known SRSF3-dependent splicing events. The results indicate that IGF2 overexpression in conjunction with reduced SRSF3 splicing activity could be a major cause of DNA damage and driver of liver cancer.
Project description:ARID1A, encoding a subunit of chromatin remodeling SWI/SNF complexes, has recently been considered as a new type of tumor suppressor gene for its somatic mutations frequently found in various human tumors, including hepatocellular carcinoma (HCC). However, the role and mechanism of inactivated ARID1A mutations in tumorigenesis remain unclear. To investigate the role of ARID1A inactivation in HCC pathogenesis, we generated hepatocyte-specific Arid1a knockout (Arid1aLKO) mice by crossing mice carrying loxP-flanked Arid1a exon 8 alleles (Arid1af/f) with albumin promoter-Cre transgenic mice. Significantly, the hepatocyte-specific Arid1a deficiency results in mouse steatohepatitis and HCC development. In Arid1aLKO mice, we found that innate immune cells, including F4/80+ macrophages and CD11c+ neutrophil cells, infiltrate into the liver parenchyma, accompanied by the increased tumor necrosis factor (TNF)-α and interleukin (IL)-6, and activation of STAT3 and NF-κB pathways. In conclusion, hepatocyte-specific Arid1a deficiency could lead to mouse steatohepatitis and HCC development. This study provides an alternative mechanism by which Arid1a deficiency contributes to HCC tumorigenesis.
Project description:Peroxisome proliferator activated receptor α (PPARα) acts as a fatty acid sensor to orchestrate the transcription of genes coding for rate-limiting enzymes required for lipid oxidation in hepatocytes. Mice only lacking Pparα in hepatocytes spontaneously develop steatosis without obesity in aging. Steatosis can develop into non alcoholic steatohepatitis (NASH), which may progress to irreversible damage, such as fibrosis and hepatocarcinoma. While NASH appears as a major public health concern worldwide, it remains an unmet medical need. In the current study, we investigated the role of hepatocyte PPARα in a preclinical model of steatosis. For this, we used High Fat Diet (HFD) feeding as a model of obesity in C57BL/6 J male Wild-Type mice (WT), in whole-body Pparα- deficient mice (Pparα-/-) and in mice lacking Pparα only in hepatocytes (Pparαhep-/-). We provide evidence that Pparα deletion in hepatocytes promotes NAFLD and liver inflammation in mice fed a HFD. This enhanced NAFLD susceptibility occurs without development of glucose intolerance. Moreover, our data reveal that non-hepatocytic PPARα activity predominantly contributes to the metabolic response to HFD. Taken together, our data support hepatocyte PPARα as being essential to the prevention of NAFLD and that extra-hepatocyte PPARα activity contributes to whole-body lipid homeostasis.
Project description:Wilm's tumor 1-associating protein (WTAP), a regulatory protein of the m6A methyltransferase complex, has been found to play a role in regulating various physiological and pathological processes. However, the in vivo role of WTAP in the pathogenesis of hepatocellular carcinoma (HCC) is unknown. In this study, we have elucidated the crucial role of WTAP in HCC progression and shown that hepatic deletion of Wtap promotes HCC pathogenesis through activation of multiple signaling pathways. A single dose of diethylnitrosamine injection causes more and larger HCCs in hepatocyte-specific Wtap knockout (Wtap-HKO) mice than Wtapflox/flox mice fed with either normal chow diet or a high-fat diet. Elevated CD36, IGFBP1 (insulin-like growth factor-binding protein 1), and chemokine (C-C motif) ligand 2 (CCL2) expression leads to steatosis and inflammation in the Wtap-HKO livers. The hepatocyte proliferation is dramatically increased in Wtap-HKO mice, which is due to higher activation of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription-3 signaling pathways. Hepatic deletion of Wtap activates the ERK signaling pathway by increasing the protein stability of GRB2 and ERK1/2, which is due to the decreased expression of proteasome-related genes. Restoring PSMB4 or PSMB6 (two key components of the proteasome) leads to the downregulation of GRB2 and ERK1/2 in Wtap-HKO hepatocytes. Mechanistically, WTAP interacts with RNA polymerase II and H3K9ac to maintain expression of proteasome-related genes. These results demonstrate that hepatic deletion of Wtap promotes HCC progression through activating GRB2-ERK1/2-mediated signaling pathway depending on the downregulation of proteasome-related genes especially Psmb4 and Psmb6.