Project description:Congenital diaphragmatic hernia (CDH) is a relatively common major life-threatening birth defect that results in significant mortality and morbidity depending primarily on lung hypoplasia, persistent pulmonary hypertension, and cardiac dysfunction. Despite its clinical relevance, CDH multifactorial etiology is still not completely understood. We reviewed current knowledge on normal diaphragm development and summarized genetic mutations and related pathways as well as cellular mechanisms involved in CDH. Our literature analysis showed that the discovery of harmful de novo variants in the fetus could constitute an important tool for the medical team during pregnancy, counselling, and childbirth. A better insight into the mechanisms regulating diaphragm development and genetic causes leading to CDH appeared essential to the development of new therapeutic strategies and evidence-based genetic counselling to parents. Integrated sequencing, development, and bioinformatics strategies could direct future functional studies on CDH; could be applied to cohorts and consortia for CDH and other birth defects; and could pave the way for potential therapies by providing molecular targets for drug discovery.
Project description:ObjectiveCongenital Diaphragmatic Hernia (CDH) associated with hydrops is rare. The aim of this study was to describe the incidence of this combination of anomalies and the postnatal outcomes from a large database for CDH.Study designData from the multicenter, multinational database on infants with prenatally diagnosed CDH (CDHSG Registry) born from 2015 to 2021 were analyzed.ResultsA total of 3985 patients were entered in the registry during the study period, 3156 were prenatally diagnosed and 88 were reported to have associated fluid in at least 1 compartment, representing 2.8% of all prenatally diagnosed CDH cases in the registry. The overall survival to discharge for CDH patients with hydrops was 43%. The hydropic CDH group had lower birth weight and gestational age at birth, and increased incidence of right-sided CDH (55%), and rate of non-repair (45%). However, the survival rate for hydropic infants with CDH undergoing surgical repair was 80%. Other associated anomalies were more common in hydropic CDH (50% vs 37%, p = 0.001).ConclusionHydropic CDH is rare, only 2.8% of all prenatally diagnosed cases, and more commonly occurring in right-sided CDH. Survival rates are low, with higher rates of non-repair. However, decision-making regarding goals of care and an aggressive surgical approach in selected cases may result in survival rates comparable to non-hydropic cases.
Project description:Congenital diaphragmatic hernia (CDH) can occur in isolation or in conjunction with other birth defects (CDH+). A molecular etiology can only be identified in a subset of CDH cases. This is due, in part, to an incomplete understanding of the genes that contribute to diaphragm development. Here, we used clinical and molecular data from 36 individuals with CDH+ who are cataloged in the DECIPHER database to identify genes that may play a role in diaphragm development and to discover new phenotypic expansions. Among this group, we identified individuals who carried putatively deleterious sequence or copy number variants affecting CREBBP, SMARCA4, UBA2, and USP9X. The role of these genes in diaphragm development was supported by their expression in the developing mouse diaphragm, their similarity to known CDH genes using data from a previously published and validated machine learning algorithm, and/or the presence of CDH in other individuals with their associated genetic disorders. Our results demonstrate how data from DECIPHER, and other public databases, can be used to identify new phenotypic expansions and suggest that CREBBP, SMARCA4, UBA2, and USP9X play a role in diaphragm development.
Project description:Congenital diaphragmatic hernia (CDH) is a major birth anomaly that often occurs with additional non-hernia-related malformations, and is then referred to as CDH+. While the impact of genetic alterations does not play a major role in isolated CDH, patients with CDH+ display mutations that are usually determined via array-based comparative genomic hybridization (aCGH). We analyzed 43 patients with CDH+ between 2012 and 2021 to identify novel specific mutations via aCGH associated with CDH+ and its outcome. Deletions (n = 32) and duplications (n = 29) classified as either pathological or variants of unknown significance (VUS) could be detected. We determined a heterozygous deletion of approximately 3.75 Mb located at 8p23.1 involving several genes including GATA4, NEIL2, SOX7, and MSRA, which was consequently evaluated as pathological. Another heterozygous deletion within the region of 9p23 (9,972,017-10,034,230 kb) encompassing the Protein Tyrosine Phosphatase Receptor Type Delta gene (PTPRD) was identified in 2 patients. This work expands the knowledge of genetic alterations associated with CDH+ and proposes two novel candidate genes discovered via aCGH.
Project description:Congenital diaphragmatic hernia (CDH) is a rare congenital anomaly characterised by a diaphragmatic defect, persistent pulmonary hypertension (PH) and lung hypoplasia. The relative contribution of these three elements can vary considerably in individual patients. Most affected children suffer primarily from the associated PH, for which the therapeutic modalities are limited and frequently not evidence based. The vascular defects associated with PH, which is characterised by increased muscularisation of arterioles and capillaries, start to develop early in gestation. Pulmonary vascular development is integrated with the development of the airway epithelium. Although our knowledge is still incomplete, the processes involved in the growth and expansion of the vasculature are beginning to be unravelled. It is clear that early disturbances of this process lead to major pulmonary growth abnormalities, resulting in serious clinical challenges and in many cases death in the newborn. Here we provide an overview of the current molecular pathways involved in pulmonary vascular development. Moreover, we describe the abnormalities associated with CDH and the potential therapeutic approaches for this severe abnormality.
Project description:BackgroundCongenital diaphragmatic hernia (CDH) is a life-threatening birth defect that often co-occurs with non-hernia-related anomalies (CDH+). While copy number variant (CNV) analysis is often employed as a diagnostic test for CDH+, clinical exome sequencing (ES) has not been universally adopted.MethodsWe analysed a clinical database of ~12 000 test results to determine the diagnostic yields of ES in CDH+ and to identify new phenotypic expansions.ResultsAmong the 76 cases with an indication of CDH+, a molecular diagnosis was made in 28 cases for a diagnostic yield of 37% (28/76). A provisional diagnosis was made in seven other cases (9%; 7/76). Four individuals had a diagnosis of Kabuki syndrome caused by frameshift variants in KMT2D. Putatively deleterious variants in ALG12 and EP300 were each found in two individuals, supporting their role in CDH development. We also identified individuals with de novo pathogenic variants in FOXP1 and SMARCA4, and compound heterozygous pathogenic variants in BRCA2. The role of these genes in CDH development is supported by the expression of their mouse homologs in the developing diaphragm, their high CDH-specific pathogenicity scores generated using a previously validated algorithm for genome-scale knowledge synthesis and previously published case reports.ConclusionWe conclude that ES should be ordered in cases of CDH+ when a specific diagnosis is not suspected and CNV analyses are negative. Our results also provide evidence in favour of phenotypic expansions involving CDH for genes associated with ALG12-congenital disorder of glycosylation, Rubinstein-Taybi syndrome, Fanconi anaemia, Coffin-Siris syndrome and FOXP1-related disorders.
Project description:Worldwide, 150 children are born each day with congenital diaphragmatic hernia (CDH), a diaphragmatic defect with concomitant abnormal lung development. Patients with CDH with large defects are particularly challenging to treat, have the highest mortality, and are at significant risk of long-term complications. Advances in prenatal and neonatal treatments have improved survival in high-risk patients with CDH, but surgical treatment of large defects lacks standardization. Open repair by an abdominal approach has long been considered the traditional procedure, but the type of defect repair (patch or muscle flap) and patch material (non-absorbable, synthetic or absorbable, biological) remain subjects of debate. Increased experience and improved techniques in minimally invasive surgery (MIS) have expanded selection criteria for thoracoscopic defect repair in cardiopulmonary stable patients with small defects. However, the application of MIS to repair large defects remains controversial due to increased recurrence rates and unknown long-term effects of perioperative hypercapnia and acidosis resulting from capnothorax and reduced ventilation. Current recommendations on the surgical management rely on cohort studies of varying patient numbers and data on the long-term outcomes are sparse. Here, we discuss surgical approaches for diaphragmatic defect repair highlighting advancements, and knowledge gaps in surgical techniques (open surgery and MIS), patch materials and muscle flaps for large defects, as well as procedural adjuncts and management of CDH variants.
Project description:BackgroundCongenital diaphragmatic hernia (CDH) is a congenital anomaly with high mortality and long-term morbidity. The aim of this study was to benchmark trends in 1-year and hospital volume outcomes for this condition.MethodsThis study included all infants born with CDH in England between 2003 and 2016. This was a retrospective analysis of the Hospital Episode Statistics database. The main outcomes were: 1-year mortality, neonatal length of hospital stay (nLOS), total bed-days at 1 year and readmission rate. The association between hospital volume and outcomes was assessed for specialist paediatric surgery centres.ResultsA total of 2336 infants were included (incidence 2·5 per 10 000 live births). No significant time trends were found in incidence and main outcomes. Some 1491 infants (63·8 per cent) underwent surgical repair. The 1-year mortality rate was 31·2 per cent. Median nLOS and total bed-days were 17 and 19 days respectively. The readmission rate in specialist paediatric centres was 6·3 per cent. Higher mortality was associated with birthweight lower than 1 kg (OR 5·90, 95 per cent c.i. 1·03 to 33·75), gestational age of 36 weeks or less (OR 1·75, 1·12 to 2·75) and black ethnicity (OR 2·13, 1·03 to 4·48). Only 4·0 per cent had extracorporeal membrane oxygenation, which was associated with higher mortality (OR 5·34, 3·01 to 9·46), longer nLOS (OR 3·70, 2·14 to 6·14) and longer total bed-days (OR 3·87, 2·19 to 6·83). Specialist paediatric centres showed variation in 30-day mortality (4·6 per cent with 84 per cent coefficient of variation), nLOS (median 25 (i.q.r. 15-42) days) and total bed-days (median 28 (i.q.r. 16-51) days), but no significant volume-outcome relationship.ConclusionKey outcomes for CDH were similar to those of other developed countries. High variation among specialist paediatric centres was found and should be investigated further to explore the value of regionalization of care.
Project description:Congenital diaphragmatic hernia (CDH) is a common and often devastating birth defect that can occur in isolation or as part of a malformation complex. Considerable progress is being made in the identification of genetic causes of CDH. We applied array-based comparative genomic hybridization (aCGH) of approximately 1Mb resolution to 29 CDH patients with prior normal karyotypes who had been recruited into our multi-site study. One patient, clinically diagnosed with Fryns syndrome, demonstrated a de novo 5Mb deletion at chromosome region 1q41-q42.12 that was confirmed by FISH. Given prior reports of CDH in association with cytogenetic abnormalities in this region, we propose that this represents a locus for Fryns syndrome, a Fryns syndrome phenocopy, or CDH.
Project description:Congenital Diaphragmatic Hernia (CDH) is defined by the presence of an orifice in the diaphragm, more often left and posterolateral that permits the herniation of abdominal contents into the thorax. The lungs are hypoplastic and have abnormal vessels that cause respiratory insufficiency and persistent pulmonary hypertension with high mortality. About one third of cases have cardiovascular malformations and lesser proportions have skeletal, neural, genitourinary, gastrointestinal or other defects. CDH can be a component of Pallister-Killian, Fryns, Ghersoni-Baruch, WAGR, Denys-Drash, Brachman-De Lange, Donnai-Barrow or Wolf-Hirschhorn syndromes. Some chromosomal anomalies involve CDH as well. The incidence is < 5 in 10,000 live-births. The etiology is unknown although clinical, genetic and experimental evidence points to disturbances in the retinoid-signaling pathway during organogenesis. Antenatal diagnosis is often made and this allows prenatal management (open correction of the hernia in the past and reversible fetoscopic tracheal obstruction nowadays) that may be indicated in cases with severe lung hypoplasia and grim prognosis. Treatment after birth requires all the refinements of critical care including extracorporeal membrane oxygenation prior to surgical correction. The best hospital series report 80% survival but it remains around 50% in population-based studies. Chronic respiratory tract disease, neurodevelopmental problems, neurosensorial hearing loss and gastroesophageal reflux are common problems in survivors. Much more research on several aspects of this severe condition is warranted.