Project description:Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry- and research-based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year-long undergraduate biochemistry laboratory curriculum wherein students determine, via experiment and computation, the function of a protein of known three-dimensional structure. The first half of the course is inquiry-based and modular in design; students learn general biochemical techniques while gaining preparation for research experiments in the second semester. Having learned standard biochemical methods in the first semester, students independently pursue their own (original) research projects in the second semester. This new curriculum has yielded an improvement in student performance and confidence as assessed by various metrics. To disseminate teaching resources to students and instructors alike, a freely accessible Biochemistry Laboratory Education resource is available at http://biochemlab.org.
Project description:Today, more minority students are entering undergraduate programs than ever before, but they earn only 6% of all science or engineering PhDs awarded in the United States. Many studies suggest that hands-on research activities enhance students' interest in pursuing a research career. In this paper, we present a model for the implementation of laboratory research in the undergraduate teaching laboratory using a culturally relevant approach to engage students. Laboratory modules were implemented in upper-division genetics and cell biology courses using cassava as the central theme. Students were asked to bring cassava samples from their respective towns, which allowed them to compare their field-collected samples against known lineages from agricultural stations at the end of the implementation. Assessment of content and learning perceptions revealed that our novel approach allowed students to learn while engaged in characterizing Puerto Rican cassava. In two semesters, based on the percentage of students who answered correctly in the premodule assessment for content knowledge, there was an overall improvement of 66% and 55% at the end in the genetics course and 24% and 15% in the cell biology course. Our proposed pedagogical model enhances students' professional competitiveness by providing students with valuable research skills as they work on a problem to which they can relate.
Project description:Course-based undergraduate research experiences (CUREs) are an effective way to integrate research into an undergraduate science curriculum and extend research experiences to a large, diverse group of early-career students. We developed a biology CURE at the University of Miami (UM) called the UM Authentic Research Laboratories (UMARL), in which groups of first-year students investigated novel questions and conducted projects of their own design related to the research themes of the faculty instructors. Herein, we describe the implementation and student outcomes of this long-running CURE. Using a national survey of student learning through research experiences in courses, we found that UMARL led to high student self-reported learning gains in research skills such as data analysis and science communication, as well as personal development skills such as self-confidence and self-efficacy. Our analysis of academic outcomes revealed that the odds of students who took UMARL engaging in individual research, graduating with a degree in science, technology, engineering, or mathematics (STEM) within 4 years, and graduating with honors were 1.5-1.7 times greater than the odds for a matched group of students from UM's traditional biology labs. The authenticity of UMARL may have fostered students' confidence that they can do real research, reinforcing their persistence in STEM.
Project description:We have developed and tested two linked but separable structured inquiry exercises using a set of Drosophila melanogaster GAL4 enhancer trap strains for an upper-level undergraduate laboratory methods course at Bucknell University. In the first, students learn to perform inverse PCR to identify the genomic location of the GAL4 insertion, using FlyBase to identify flanking sequences and the primary literature to synthesize current knowledge regarding the nearest gene. In the second, we cross each GAL4 strain to a UAS-CD8-GFP reporter strain, and students perform whole mount CNS dissection, immunohistochemistry, confocal imaging, and analysis of developmental expression patterns. We have found these exercises to be very effective in teaching the uses and limitations of PCR and antibody-based techniques as well as critical reading of the primary literature and scientific writing. Students appreciate the opportunity to apply what they learn by generating novel data of use to the wider research community.
Project description:Laboratory education can play a vital role in developing a learner's autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a "mutation" method in a molecular genetics laboratory course. Students could choose to delete, add, reverse, or replace certain steps of the standard protocol to explore questions of interest to them in a given experimental scenario. They wrote experimental proposals to address their rationales and hypotheses for the "mutations"; conducted experiments in parallel, according to both standard and mutated protocols; and then compared and analyzed results to write individual lab reports. Various autonomy-supportive measures were provided in the entire experimental process. Analyses of student work and feedback suggest that students using the MBL approach 1) spend more time discussing experiments, 2) use more scientific inquiry skills, and 3) find the increased autonomy afforded by MBL more enjoyable than do students following regimented instructions in a conventional "cookbook"-style laboratory. Furthermore, the MBL approach does not incur an obvious increase in labor and financial costs, which makes it feasible for easy adaptation and implementation in a large class.
Project description:We designed a 16-week scaffolded student-scientist curriculum using inquiry-based research experiences integrated with professional development activities. This curriculum was implemented to teach undergraduate students enrolled in an introduction to biology course about enzyme activity, biochemical reactions, and alcohol fermentation. While working through the curriculum, students completed the entire scientific process by planning experiments, maintaining laboratory journals, analyzing and interpreting data, peer-reviewing research proposals, and producing and presenting a poster. The overall outcome was for students to complete a multiweek, collaborative, student-scientist project using Saccharomyces cerevisiae as the model organism. Student learning outcomes were evaluated using formative assessments (post-Research on the Integrated Science Curriculum survey and peer- and self-reflection worksheets) and summative assessments (pre/post assessments and assignment grades). Results indicated that more than 50% of the students scored 70% or higher on the collaborative student-scientist project, demonstrated several self-reported learning gains in scientific concepts and skills, and reported they would recommend this laboratory course to their peers. By providing the opportunity for students to carry out the entire scientific process, this curriculum enhanced their technical, analytical, and communication skills.
Project description:In introductory laboratory courses, many universities are turning from traditional laboratories with predictable outcomes to inquiry-inspired, project-based laboratory curricula. In these labs, students are allowed to design at least some portion of their own experiment and interpret new, undiscovered data. We have redesigned the introductory biology laboratory course at Brandeis University into a semester-long project-based laboratory that emphasizes concepts and contains an element of scientific inquiry. In this laboratory, students perform a site-directed mutagenesis experiment on the gene encoding human γD crystallin, a human eye lens protein implicated in cataracts, and assess the stability of their newly created protein with respect to wild-type crystallin. This laboratory utilizes basic techniques in molecular biology to emphasize the importance of connections between DNA and protein. This project lab has helped engage students in their own learning, has improved students' skills in critical thinking and analysis, and has promoted interest in basic research in biology.
Project description:A challenge in teaching immunology in the undergraduate laboratory is to encompass the many varied skills that need to be applied when performing an investigative study of such a complex area. It requires background knowledge, data analysis skills, critical thinking, and design capacities to include relevant controls and applications of particular techniques to answer a research question. It also requires strong technical skills. One such approach is to use inquiry-based learning which allows students a more proactive and integrative role in their learning. In one of our final year immunology units we have incorporated an inquiry-based exercise that runs across four 5-hour sessions. Students are given two cornerstone immunology techniques (ELISA and a flow cytometry-based cytokine bead array), which they use to formulate a study investigating inflammation. Stage one is to design the experiment with some guidance from teaching staff, stage two is to perform the experiment, and then finally students are required to analyze the data, apply appropriate statistics, and write a report outlining their findings. This approach provides students ownership of the process and allows them the opportunity to investigate a real-world problem rather than just attempting to obtain the expected "correct answer." Feedback from both students and staff has been positive with strong engagement and high quality reports produced.
Project description:The accelerating expansion of online bioinformatics tools has profoundly impacted molecular biology, with such tools becoming integral to the modern life sciences. As a result, molecular biology laboratory education must train students to leverage bioinformatics in meaningful ways to be prepared for a spectrum of careers. Institutions of higher learning can benefit from a flexible and dynamic instructional paradigm that blends up-to-date bioinformatics training with best practices in molecular biology laboratory pedagogy. At North Carolina State University, the campus-wide interdisciplinary Biotechnology (BIT) Program has developed cutting-edge, flexible, inquiry-based Molecular Biology Laboratory Education Modules (MBLEMs). MBLEMs incorporate relevant online bioinformatics tools using evidenced-based pedagogical practices and in alignment with national learning frameworks. Students in MBLEMs engage in the most recent experimental developments in modern biology (e.g., CRISPR, metagenomics) through the strategic use of bioinformatics, in combination with wet-lab experiments, to address research questions. MBLEMs are flexible educational units that provide a menu of inquiry-based laboratory exercises that can be used as complete courses or as parts of existing courses. As such, MBLEMs are designed to serve as resources for institutions ranging from community colleges to research-intensive universities, involving a diverse range of learners. Herein, we describe this new paradigm for biology laboratory education that embraces bioinformatics as a critical component of inquiry-based learning for undergraduate and graduate students representing the life sciences, the physical sciences, and engineering.