Unknown

Dataset Information

0

Prediction of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer by using a deep learning model with 18F-FDG PET/CT.


ABSTRACT:

Objectives

The aim of the study is 18F-FDG PET/CT imaging by using deep learning method are predictive for pathological complete response pCR after Neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC).

Introduction

NAC is the standard treatment for locally advanced breast cancer (LABC). Pathological complete response (pCR) after NAC is considered a good predictor of disease-free survival (DFS) and overall survival (OS).Therefore, there is a need to develop methods that can predict the pCR at the time of diagnosis.

Methods

This article was designed as a retrospective chart study.For the convolutional neural network model, a total of 355 PET/CT images of 31 patients were used. All patients had primary breast surgery after completing NAC.

Results

Pathological complete response was obtained in a total of 9 patients. The study results show that our proposed deep convolutional neural networks model achieved a remarkable success with an accuracy of 84.79% to predict pathological complete response.

Conclusion

It was concluded that deep learning methods can predict breast cancer treatment.

SUBMITTER: Bulut G 

PROVIDER: S-EPMC10501592 | biostudies-literature | 2023

REPOSITORIES: biostudies-literature

altmetric image

Publications

Prediction of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer by using a deep learning model with 18F-FDG PET/CT.

Bulut Gülcan G   Atilgan Hasan Ikbal HI   Çınarer Gökalp G   Kılıç Kazım K   Yıkar Deniz D   Parlar Tuba T  

PloS one 20230914 9


<h4>Objectives</h4>The aim of the study is 18F-FDG PET/CT imaging by using deep learning method are predictive for pathological complete response pCR after Neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC).<h4>Introduction</h4>NAC is the standard treatment for locally advanced breast cancer (LABC). Pathological complete response (pCR) after NAC is considered a good predictor of disease-free survival (DFS) and overall survival (OS).Therefore, there is a need to develop metho  ...[more]

Similar Datasets

| S-EPMC11630790 | biostudies-literature
| S-EPMC7577806 | biostudies-literature
| S-EPMC10887300 | biostudies-literature
| S-EPMC4873546 | biostudies-literature
| S-EPMC5439668 | biostudies-literature
| S-EPMC6095513 | biostudies-literature
| S-EPMC4278058 | biostudies-literature
| S-EPMC5431555 | biostudies-literature
| S-EPMC4571668 | biostudies-literature
| S-EPMC9024185 | biostudies-literature