Project description:The objective of this study was to investigate the effect of a diet supplemented with fresh amla fruit as a natural feed additive on blood metabolic parameters, milk antioxidant capacity, and milk fatty acid (FA) proportions in lactating dairy cows. Eight ruminally cannulated mid-lactation dairy cows were used in a repeated crossover design. The first group of four cows received total mixed ration (TMR) feed without fresh amla fruit (control group). The remaining four cows sequentially supplemented fresh amla fruit (FAF) at three levels (200, 400, then 600 g/d) (treatment group) at 14-day intervals. In second period, control and treatment groups were exchanged. The first ten days were adjusted to diet adaptation for each sub-period, and the last four days for sampling milk and blood. A total of 514 metabolites were detected from FAF using UPLC-ESI-MS/MS. The five main metabolites in FAF were phenolic acids (22%), flavonoids (20%), lipids (20%), amino acids and derivatives (9%), and tannins (7%). Amla fruit supplementation reduced total saturated fatty acid and the omega-6/omega-3 ratio at 200 or 400 g/d FAF dose compared to controls. In addition, amla fruit increased unsaturated FA, such as C20:5 (Eicosapentaenoic acid, EPA) and C22:6 (docosahexaenoic acid, DHA), and branched-chain FA in a dose-dependent manner at 200 or 400 g/d compared to controls. In addition, amla fruit increased the antioxidant capacity biomarkers in the blood, such as superoxide dismutase (SOD) and albumin; this confirms that amla fruit is an excellent antioxidant, inhibiting reactive oxygen species' (ROS) metabolism, and can thereby protect cells from oxidative stress. Moreover, the most remarkable improvement of ferric reducing-antioxidant power (FRAP) and total antioxidant capacity (TAC) in milk was recorded at 400 g/d FAF doses compared to controls. Therefore, fresh amla fruit doses for lactating cows at 400 g/d on an as-fed basis can be used as an alternative additive feed in dairy cow diets to improve antioxidant capacity, protein efficiency, butter quality, and to produce more desirable milk fatty acid profiles for human consumption.
Project description:Coronavirus Disease-2019 (COVID-19), a viral disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was declared a global pandemic by WHO in 2020. In this scenario, SARS-CoV-2 main protease (COVID-19 Mpro), an enzyme mainly involved in viral replication and transcription is identified as a crucial target for drug discovery. Traditionally used medicinal plants contain a large amount of bioactives and pave a new path to develop drugs and medications for COVID-19. The present study was aimed to examine the potential of Emblica officinalis (amla), Phyllanthus niruri Linn. (bhumi amla) and Tinospora cordifolia (giloy) bioactive compounds to inhibit the enzymatic activity of COVID-19 Mpro. In total, 96 bioactive compounds were selected and docked with COVID-19 Mpro and further validated by molecular dynamics study. From the docking and molecular dynamics study, it was revealed that the bioactives namely amritoside, apigenin-6-C-glucosyl7-O-glucoside, pectolinarin and astragalin showed better binding affinities with COVID-19 Mpro. Drug-likeness, ADEMT and bioactivity score prediction of best drug candidates were evaluated by DruLiTo, pkCSM and Molinspiration servers, respectively. Overall, the in silico results confirmed that the validated bioactives could be exploited as promising COVID-19 Mpro inhibitors.
Project description:Background and aimSkin aging influences the changes in skin, including skin dryness, wrinkle, and irregular pigmentation. Amla (Phyllanthus emblica L.) branch has shown several benefits, but not the anti-skin aging. The study aimed to evaluate the anti-skin aging efficacy of amla branch.Experimental procedureAmla branches were standardized the phenolic acids. The extract was investigated anti-skin aging activities, including antioxidant, anti-tyrosinase, anti-melanogenesis, and matrix metalloproteinase-2 inhibitory assays. Topical gel containing extract was prepared and evaluated the skin irritation by a single closed patch test. Randomized, double-blind, placebo-control study was performed in 20 volunteers for 84 consecutive days. The tested skin was evaluated by Chromameter® CR 400, Dermalab® USB, Mexameter® MX 18, Corneometer® CM 825, and Visioscan® VC 98.ResultsAmla branch extract, a dark brown powder, consisted a variety of phenolic acids, mainly sinapic and ferulic acids. The extract exhibited the potent antioxidant and tyrosinase inhibitory activities in vitro assays and the melanin suppression through inhibition of tyrosinase and tyrosinase-related protein-2 activities, the strong antioxidant, and the potent matrix metalloproteinase-2 in cellular assays at 0.1 mg/mL. Topical gel containing 0.1% extract was a stable and safe formulation. Clinical study was proved the superior anti-skin aging efficacy, including the lightening skin color, the enhanced skin elasticity and hydration, and the skin wrinkle reduction.ConclusionThe study results suggested that amla branch is a rich source of bioactive compounds and can be a potential ingredient for utilization in anti-skin aging products.
Project description:Disease is the main reason for the use of antimicrobials in calf rearing, and antibiotics are commonly used to treat calves, including for unknown diseases. This leads to antimicrobial resistance, which is a challenge to the livestock industry and public health. Plant products containing high levels of phytochemicals may improve the immunity and resistance of calves against infections, thereby reducing the use of antimicrobials. This study aimed to investigate the effect of Phyllanthus emblica (Amla) fruit powder (PE) supplementation on antioxidant capacity and immune response of preweaning dairy calves. One hundred, 2-day-old, male Holstein calves were randomly assigned into five treatment groups receiving 0, 5, 10, 20, and 40 g/d PE supplementation. Antioxidant and immune indices and pro- and anti-inflammatory cytokines were analyzed from serum samples, whereas 16S rRNA was analyzed from rumen fluid and fecal samples. PE supplementation, at 5 g/d, protected calves against oxidative stress and improved antioxidant enzymes and immune and anti-inflammatory responses, showing its immunity-enhancing and protective roles against infections. However, the antioxidant capacity and immune response decreased with increasing PE levels, illustrating the adverse effects of PE supplementation at higher doses. The analysis of ruminal and fecal bacterial community abundance detected higher proportions of Firmicutes at an early age, and a higher Bacteroidetes to Firmicutes ratio at weaning, in calves supplemented with 5 g/d PE. This contributed to the development of the immune system in early life, and improved immune and anti-inflammatory responses at a later age. The overall results suggest that PE could be supplemented at 5 g/d for preweaning dairy calves to protect against oxidative stress and infections while maintaining normal gut microbial hemostasis.
Project description:In present study free radical scavenging potential of aerial parts and root of Phyllanthus fraternus was investigated. Extraction was done in water and ethanol. Total antioxidant capacity was measured by DPPH free radical scavenging method; ethanolic extract of aerial part was most potent in activity with 50% inhibition at 258 μg/mL concentration. Lipid peroxidation (LPO) was measured in terms of thiobarbituric acid-reactive substances (TBARS) by using egg-yolk homogenates as lipid-rich media with EC₅₀ of aerial part (ethanolic) 1522 μg/mL which was found to be most active. Superoxide (SO) radical scavenging activity was measured using riboflavin-light-nitroblue tetrazolium assay. Ethanolic and aqueous extract of both aerial part and root was almost similar in superoxide radical scavenging activity. Reducing power was determined on the basis of Fe³⁺-Fe⁺ transformation in the presence of extract. Total phenolic and flavonoid contents were also measured by spectroscopic method. Results showed that the ethanolic fraction of aerial part is most active towards antioxidant potential and this activity is related to its polyphenolic content and reducing potential. Thus, P. fraternus extract can be used as potent natural antioxidant.
Project description:Ultraviolet B (UVB) exposure is the primary risk factor for the deadliest type of skin cancer-melanoma. Incorporating natural antioxidants in skin protection products is currently a favored research theme. For this study, we selected Phyllanthus emblica L. fruit extract (PE) to assess its potential use in dermal protection against UVB-induced keratinocyte inflammation and apoptosis. High-performance liquid chromatography (HPLC) was used to investigate PE's phytochemical constituents (ascorbic acid, ellagic acid, gallic acid, chlorogenic acid, and quercetin), while ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), total ROS, OH•, O2•-, and H2O2-scavenging activities were used to determine the antioxidant properties. PE significantly increased the cell viability (MTT assay) and reduced apoptosis (Hoechst staining) in HaCaT cells exposed to UVB (40 mJ/cm2). PE abolished oxidative stress by reducing the production of intracellular ROS, O2•- and H2O2 production. Catalase activity (but not superoxide dismutase or glutathione peroxidase activity) was enhanced in keratinocytes incubated with PE prior to UVB exposure. Western blot analysis suggested that PE inhibited cytochrome c release and inhibited the dysregulation of PI3K/Akt without any impact on p38 activation. PE attenuated the inflammatory response to UVB irradiation by inhibiting AP-1, NF-κB, and the mediator PGE2. Thus, PE is a candidate with great potential for use as an active ingredient in skin care products.
Project description:Phyllanthus emblica (Aonla, Indian Gooseberry) is known to have various medicinal properties, but studies to understand its genetic structure are limited. Among the various secondary metabolites, ascorbic acid, flavonoids, terpenoids, phenols and tannins possess great potential for its pharmacological applications. Keeping this consideration, we assembled the transcriptome using the Illumina RNASeq500 platform, generating 39,933,248 high-quality paired-end reads assembled into 1,26,606 transcripts. A total of 87,771 unigenes were recovered after isoforms and unambiguous sequences deletion. Functional annotation of 43,377 coding sequences against the NCBI non-redundant (Nr) database search using BlastX yielded 38,692 sequences containing blast hits and found 4685 coding sequences to be unique. The transcript showed maximum similarity to Hevea brasilensis (16%), followed by to Jatropha curcas (12%). Considering key genes involved in the biosynthesis of flavonoids and various classes of terpenoid compounds, thirty EST-SSR primer sequences were designed based on transcriptomic data. Of which, 12 were found to be highly polymorphic with an average of 86.38%. The average value for marker index (MI), effective multiplicity ratio (EMR), resolution power (Rp) and polymorphic information content (PIC) was 7.20, 8.34, 8.64 and 0.80, respectively. Thus, from this study, we developed newly EST-SSRs linked to important genes involved in the secondary metabolites biosynthesis that will be serving as an invaluable genetic resource for crop improvement including the selection of elite genotypes in P. emblica and its closely related Phyllanthaceae species.
Project description:Dietary fruits and vegetables play a vital role as food and drugs and are the main sources of antioxidant defences against degenerative diseases, such as brain dysfunctions, cardiovascular diseases, immune system deteriorations, and cancers, brought on by oxidative damage. Phyllanthus emblica is a significant herbal remedy used in conventional medicine to recover lost strength and power. In this research, the potential value of Phyllanthus emblica as a food and drug is researched. The total phenolic, total flavonoid, and total tannin contents as well as the nutritional value, vitamin C, vitamin E, and mineral contents of different organs of P. emblica were evaluated. The antioxidant and antimicrobial activities of extracts and fractions of different organs of P. emblica were determined. A total of eleven flavonoids, simple phenolic, tannin-related phenolic, and tannin molecules were isolated from a hydroalcoholic extract of the leaves and fruits. The structures were identified by spectroscopic data and comparison with the literature values as gallic acid (1), naringenin 7-O-(6″-O-galloyl)-β-D-glucopyranoside (2), 3,3'-di-O-methyl ellagic acid-4'-O-β-d-glucopyranoside (3), 1-O-galloyl glycerol (4), 1,6-di-O-galloyl-β-d-glucopyranoside (5), flavogallonic acid bislactone (6), corilagin (7), ethyl gallate (8), urolithin M5 (9), (E)-p-coumaroyl-1-O-β-d-glucopyranoside (10), and 1,2,4,6-tetra-O-galloyl-β-d-glucopyranoside (11). Among them, compounds 3 and 10 are first isolated from the plant. Molecular docking was performed to investigate the comparative interactions between positive controls (galantamine and donepezil) and selected compounds utilizing acetylcholinesterase (4EY7) as a target receptor. Results exhibited the potency of these compounds against the target receptor. In summary, P. emblica has a wealth of minerals, vitamins C and E, and polyphenolic phytochemicals that may work together to treat infectious disease, prevent and/or treat oxidative-damage-related illnesses including Alzheimer's disease.
Project description:Amla (Phyllanthus emblica) has long been used in traditional folk medicine to prevent and cure a variety of inflammatory diseases. In this study, the antioxidant activity (DPPH scavenging and reducing power), anti-inflammatory activity (RBC Membrane Stabilization and 15-LOX inhibition), and anticoagulation activity (Serin protease inhibition and Prothrombin Time assays) of the methanolic extract of amla were conducted. Amla exhibited a substantial amount of phenolic content (TPC: 663.53 mg GAE/g) and flavonoid content (TFC: 418.89 mg GAE/g). A strong DPPH scavenging effect was observed with an IC50 of 311.31 µg/ml as compared to standard ascorbic acid with an IC50 of 130.53 µg/ml. In reducing power assay, the EC50 value of the extract was found to be 196.20 µg/ml compared to standard ascorbic acid (EC50 = 33.83 µg/ml). The IC50 value of the RBC membrane stabilization and 15-LOX assays was observed as 101.08 µg/ml (IC50 of 58.62 µg/ml for standard aspirin) and 195.98 µg/ml (IC50 of 19.62 µg/ml for standard quercetin), respectively. The extract also strongly inhibited serine protease (trypsin) activity with an IC50 of 505.81 µg/ml (IC50 of 295.44 µg/ml for standard quercetin). The blood coagulation time (PTT) was found to be 11.91 min for amla extract and 24.11 min for standard Warfarin. Thus, the findings of an in vitro study revealed that the methanolic extract of amla contains significant antioxidant, anti-inflammatory, and anticoagulation activity. Furthermore, in silico docking and simulation of reported phytochemicals of amla with human 15-LOXA and 15-LOXB were carried out to validate the anti-inflammatory activity of amla. In this analysis, epicatechin and catechin showed greater molecular interaction and were considerably stable throughout the 100 ns simulation with 15-lipoxygenase A (15-LOXA) and 15-lipoxygenase B (15-LOXB) respectively.
Project description:Effect of four different cultivars and salt pretreatment on drying of Amla (Emblica officinalis) gratings were studied. Quality attributes namely, ascorbic acid, total phenolic content, antioxidant activity and colour were evaluated for dried (using Cabinet tray dryer at 55 ± 2 °C for 8 h) and stored (refrigerated, ambient and accelerated condition) samples of four cultivars (Krishna, Kanchan, NA-7 and Chakaiya). Salt pretreated dried samples showed better retention of nutrients and colour as compared to untreated. Retention of ascorbic acid, total phenolic content and antioxidant activity (IC50 value) in pretreated dried samples were in the range of 79.51-84.89%, 176.5-220.3 mg GAE/g db and 9.48 to 17.74 mg/µl, respectively. Colour retention was also found to be better in salt pretreated samples. Ambient storage condition resulted in higher retention of ascorbic acid and colour compared to accelerated condition. Taking into consideration, the nutritional value of the fresh Amla, ability to retain nutritional value and color during drying and storage, NA-7 cultivar Amla (pretreated with 1% salt, tray dried at 55 °C for 8 h) is the most suitable for preparation of Amla powder. The method developed in the present work is devoid of blanching step and found to be effective in retaining the nutrients during drying and storage and can be employed also for drying of similar fruits and vegetables.