Project description:Circular RNA‑lipoprotein receptor 6 (circ‑LRP6) serves a role in promoting the tumorigenesis of retinoblastoma, esophageal squamous cell cancer and oral squamous cell carcinoma; however, whether circ‑LRP6 demonstrates the same effect in osteosarcoma (OS) is yet to be fully elucidated. The present study aimed to analyze the expression, role and potential molecular mechanism of circ‑LRP6 in OS. The expression levels of circ‑LRP6, microRNA (miR)‑141‑3p, histone deacetylase 4 (HDAC4) and high mobility group protein 1 (HMGB1) were evaluated by reverse transcription-quantitative PCR in OS tissues and cell lines. Cell Counting Kit‑8, Transwell and Matrigel assays were conducted to evaluate cell proliferation, migration and invasion, respectively. Western blotting was also performed to determine HDAC4 and HMGB1 protein expression levels. Bioinformatics and dual‑luciferase reporter assays were used to predict and analyze the interactions between circ‑LRP6 and miR‑141‑3p, miR‑141‑3p and HDAC4, as well as between miR‑141‑3p and HMGB1. Additionally, RNA immunoprecipitation was performed to verify the association between circ‑LRP6 and miR‑141‑3p. The results confirmed that circ‑LRP6 was highly expressed in OS tissues and cell lines. In addition, circ‑LRP6 negatively regulated the expression of miR‑141‑3p and, in turn, miR‑141‑3p negatively regulated HDAC4 and HMGB1 expression. Functional assays revealed that circ‑LRP6 knockdown inhibited the proliferation, migration and invasion of OS cells, whereas the inhibition of miR‑141‑3p or the overexpression of either HDAC4 or HMGB1 partly reversed the inhibitory effect of circ‑LRP6 knockdown. In summary, the present study determined that circ‑LRP6 knockdown inhibited the proliferation, migration and invasion of OS cells by regulating the miR‑141‑3p/HDAC4/HMGB1 axis.
Project description:Background & aimsMicroRNAs (miRNAs) act as a regulatory mechanism on a post-transcriptional level by repressing gene transcription/translation and play a central role in the cellular stress response. Osmotic changes occur in a variety of diseases including liver cirrhosis and hepatic encephalopathy. Changes in cell hydration and alterations of the cellular volume are major regulators of cell function and gene expression. In this study, the modulation of hepatic gene expression in response to hypoosmolarity was studied.MethodsmRNA analyses of normo- and hypoosmotic perfused rat livers by gene expression arrays were used to identify miRNA and their potential target genes associated with cell swelling preceding cell proliferation. Selected miR-141-3p was also investigated in isolated hepatocytes treated with miRNA mimic, cell stretching, and after partial hepatectomy. Inhibitor perfusion studies were performed to unravel signalling pathways responsible for miRNA upregulation.ResultsUsing genome-wide transcriptomic analysis, it was shown that hypoosmotic exposure led to differential gene expression in perfused rat liver. Moreover, miR-141-3p was upregulated by hypoosmolarity in perfused rat liver and in primary hepatocytes. In concert with this, miR-141-3p upregulation was prevented after Src-, Erk-, and p38-MAPK inhibition. Furthermore, luciferase reporter assays demonstrated that miR-141-3p targets cyclin dependent kinase 8 (Cdk8) mRNA. Partial hepatectomy transiently upregulated miR-141-3p levels just after the initiation of hepatocyte proliferation, whereas Cdk8 mRNA was downregulated. The mechanical stretching of rat hepatocytes resulted in miR-141-3p upregulation, whereas Cdk8 mRNA tended to decrease. Notably, the overexpression of miR-141-3p inhibited the proliferation of Huh7 cells.ConclusionsSrc-mediated upregulation of miR-141-3p was found in hepatocytes in response to hypoosmotic swelling and mechanical stretching. Because of its antiproliferative function, miR-141-3p may counter-regulate the proliferative effects triggered by these stimuli.Lay summaryIn this study, we identified microRNA 141-3p as an osmosensitive miRNA, which inhibits proliferation during liver cell swelling. Upregulation of microRNA 141-3p, controlled by Src-, Erk-, and p38-MAPK signalling, results in decreased mRNA levels of various genes involved in metabolic processes, macromolecular biosynthesis, and cell cycle progression.
Project description:BackgroundCircular RNAs (circRNAs) are important regulators in the pathogenesis of diseases and affects the occurrence and development of diseases. However, the role of circRNAs in osteosarcoma (OS) has not been fully elucidated.MethodsThe expression of circ_0000285, miR-409-3p and insulin-like growth factor binding protein 3 (IGFBP3) was detected using quantitative real-time PCR (qRT-PCR). The protein level of IGFBP3 was measured using western blot. CCK-8 and colony formation assays were used to determine cell proliferation. Flow cytometry was applied to measure cell cycle and cell apoptosis. Transwell assay was used to assess cell invasion and migration. Dual-luciferase reporter assay and RNA Binding Protein Immunoprecipitation (RIP) assay were performed to determine the relationship among circ_0000285, miR-409-3p and IGFBP3. The animal experiments were performed to determine the function of circ_0000285 in vivo.ResultsIn this study, we found that the expression of circ_0000285 was significantly increased in OS tissues and cells and was enriched in the cytoplasm. Knockdown of circ_0000285 inhibited OS growth in vitro and in vivo. Moreover, miR-409-3p was a target miRNA of circ_0000285 and miR-409-3p targets to IGFBP3 in OS. Besides, circ_0000285 could promote proliferation, migration, invasion and inhibit apoptosis of osteosarcoma by miR-409-3p/IGFBP3 axis.ConclusionIn this study, circ_0000285 regulated proliferation, migration, invasion and apoptosis of OS cells by miR-409-3p/IGFBP3 axis, implying that circ_0000285 was a potential target for OS therapy.
Project description:Purpose: It remains unclear that long noncoding RNAs' role in cancer initiation and progression, including osteosarcoma. Long noncoding RNA LINC00963 was found to be participated in carcinogenesis and progression of osteosarcoma. However, the molecular mechanisms of LINC00963 engaged in osteosarcoma (OS) still needs to be explored. Methods: LINC00963 and miR-204-3p RNA expression levels were quantified by PCR in OS tissues and cells. CCK 8 assay, wound healing assay and transwell migration and invasion assay were chosen to assess cell growth, viability, migration, and invasion. Luciferase reporter assays were performed to verify direct interaction between LINC00963 and miR-204-3p and miR-204-3p and Fibronectin-1. Western blot was conducted to evaluate Fibronectin-1 expression in OS cells. Results: LINC00963 was verified to be highly expressed in OS samples and cells. Specifically, elevated expression of LINC00963 was correlated with poor prognosis in patients. Furthermore, LINC00963 overexpression was found to promote proliferation, migration, and invasion in vitro. The luciferase reporter assay showed that LINC00963 can suppress miR-204-3p by directly binding miR-204-3p. Rescue experiment results indicated that function of LINC00963 in osteosarcoma was miR-204-3p dependant. Besides, we initially explored Fibronectin-1 (FN1) as the target of LINC00963/miR-204-3p axis in osteosarcoma. Conclusions: Our findings implied that LINC00963/miR-204-3p/FN1 can play an important role in proliferation and progression in osteosarcoma. LINC00963 has the potential to be a therapeutic target for osteosarcoma treatment.
Project description:BackgroundMany studies have used miRNA to modulate osteosarcoma development by regulating protein expression, and these studies showed that the expression of EGFR is increased in osteosarcoma.MethodsWestern blot, real-time PCR and immunohistochemical were used to detect the expression of EGFR and miR-141 in osteosarcoma tissues and cells. The correlation between miR-141 and the grading of osteosarcoma and the correlation with the survival time of the patients were analyzed. After predicting the target effect of miR-141 on EGFR by miRDB, correlation analysis was used to analyze the correlation between miR-141 and EGFR. Luciferase reporter gene, western blot and real-time PCR were used to detect the targeting effect of miR-141 on EGFR. Then we detected the effect of miR-141 on proliferation by MTT and PI staining. The effect of miR-141 on cell apoptosis was detected by Hochest33258 and AV-PI staining, and the effect of miR-141 on cell migration was detected by Transwell. The regulatory effects of miR-141 on related proteins were detected by western blot and real-time PCR. Finally, we transfected EGFR and EGFR DEL (mutation with miR-141 binding site) in osteosarcoma cells, and detected the effects of miR-141 on cell proliferation, apoptosis, migration and related proteins.ResultsThe expression of miR-141-3p was negatively correlated with the expression of EGFR in osteosarcoma. The overexpression of miR-141-3p was not only closely related to the classification and size of the osteosarcoma but also had a negative effect on the growth and migration of the osteosarcoma through negative regulation of the expression of EGFR. MiR-141 can inhibit the growth and metastasis of osteosarcoma cells by targeting EGFR and affecting its downstream pathway proteins.ConclusionOur study provides miR-141-3p may be a new theoretical basis for the treatment of osteosarcoma.
Project description:Osteosarcoma (OS) is a common malignant bone cancer. Lactate dehydrogenase B (LDHB) has been revealed to act as a tumor promoter in several cancers. It is also revealed to be correlated with poor prognosis in OS, but its molecular mechanism in OS remains veiled. Our work illustrated that LDHB was overexpressed in OS tissues and cells, and it could enhance cell proliferation, migration, and invasion in OS. Subsequently, it was confirmed that fused in sarcoma (FUS) could bind with LDHB to positively regulate the stability of LDHB messenger RNA (mRNA). Besides, FUS expression was revealed to be elevated in OS tissues and positively correlate with LDHB expression. Furthermore, miR-141-3p, down-regulated in OS cells, was identified as the upstream regulator of FUS in OS cells. Besides, miR-141-3p overexpression decreased mRNA and protein levels of FUS and LDHB. More importantly, overexpression of miR-141-3p could impair FUS overexpression-mediated promotion on LDHB mRNA stability and expression. Finally, rescue assays indicated that miR-141-3p regulated OS cells cellular process via regulating LDHB. In sum, miR-141-3p targets FUS to degrade LDHB, thereby attenuating the malignancy of OS cells.
Project description:BackgroundOsteosarcoma (OS) is one of the most common malignant bone tumors in children and adolescents. Circular RNAs (circRNAs) are critical regulators involved in multiple physiological and pathological processes. However, the underlying regulatory mechanisms of circRNA in OS are still not fully understood.MethodsThe circRNA expression profiles were downloaded from the Gene Expression Omnibus (GEO) database and analyzed by GEO2R. Bioinformatics analysis was performed to predict the potential target miRNAs of hsa_circ_0069117 and its downstream mRNAs. The co-expression of hsa_circ_0069117/miR-875-3p/PF4V1 axis was further validated in OS tissue samples via quantitative real-time PCR (qRT-PCR). Luciferase reporter gene plasmids containing the sequence of PF4V1 and hsa_circ_0069117 were constructed to verify the putative sites of miR-875-3p. Gain/loss-of-function assays were performed to verify the effect of hsa_circ_0069117 on miR-875-3p/PF4V1 expression and related pathways via qRT-PCR and Western blot. Cell counting kit-8 (CCK-8) and wound-healing assays were performed to evaluate the effect of hsa_circ_0069117 on cell proliferation and migration of MG63 and U2OS, respectively.ResultsWe identified hsa_circ_0069117 as the most markedly dysregulated circRNA in OS cell lines. Bioinformatics analysis indicated that hsa_circ_0069117 might inhibit the expression of miR-875-3p, thereby promoting the expression of platelet factor 4 variant 1 (PF4V1). The expression of miR-875-3p was negatively correlated to hsa_circ_0069117 and PF4V1 in clinical samples. Luciferase reporter gene assays confirmed the binding sites of miR-875-3p on hsa_circ_0069117 and PF4V1. Gain/loss-of-function and rescue assays further indicated that hsa_circ_0069117 could significantly promote the expression of PF4V1 by sponging miR-875-3p, thereby inhibiting the proliferation and migration of OS cells by suppressing ERK1 and AKT.ConclusionOur study revealed that hsa_circ_0069117 is an anti-OS molecule that could substantially attenuate cell proliferation and migration of OS, which may provide a novel and reliable molecular target for the treatment of OS patients.
Project description:Glioma is the most prevalent and lethal primary brain tumour. Abundant long non-coding RNAs ( lncRNAs) are aberrant and play crucial roles in the oncogenesis of glioma. The exact functions of linc00475 in glioma remain blurred. Here, we analysed the expression levels of linc00475 by qRT-PCR and discovered that linc00475 was up-regulated in glioma and predicted a poor prognosis in patients with glioma. Besides, inhibiting linc00475 restrained the progression of glioma in vitro and in vivo. Further experiments confirmed that linc00475 regulated the progression of glioma by acting as a sponge for miR-141-3p. Moreover, we detected the binding sites of linc00475 and miR-141-3p, the YAP1- 3'UTR and miR-141-3p by luciferase reporters. The rescue assays confirmed that inhibiting linc00475 restrained the progression of glioma through the miR-141-3p/YAP1 pathway. Collectively, our research demonstrates the key roles of linc00475 in glioma, which could be a promising therapeutic target.
Project description:In recent years, different laboratories have provided evidence on the role of miRNAs in regulation of corneal epithelial metabolism, permeability and wound healing, as well as their alteration after surgery and in some ocular pathologies. We searched the available databases reporting miRNA expression in the human eye, looking for miRNAs highly expressed in central cornea, which could be crucial for maintenance of the epithelial phenotype. Using the rabbit RCE1(5T5) cell line as a model of corneal epithelial differentiation, we describe the participation of miR-141-3p as a possible negative regulator of the proliferative/migratory phenotype in corneal epithelial cells. The expression of miR-141-3p followed a time course similar to the differentiation-linked KRT3 cytokeratin, being delayed 24-48 hours relative to PAX6 expression; such result suggested that miR-141-3p only regulates the expression of terminal phenotype. Inhibition of miR-141-3p led to increased cell proliferation and motility, and induced the expression of molecular makers characteristic of an Epithelial Mesenchymal Transition (EMT). Comparison between the transcriptional profile of cells in which miR-141-3p was knocked down, and the transcriptomes from proliferative non-differentiated and differentiated stratified epithelia suggest that miR-141-3p is involved in the expression of terminal differentiation mediating the arrest of cell proliferation and inhibiting the EMT in highly motile early differentiating cells.
Project description:BackgroundThyroid cancer (TC) is a member of common malignant tumors in endocrine system. To develop effective treatment, further comprehension of understanding molecular mechanism in TC is necessary. In this research, we attempted to search the underlying molecular mechanism in TC.MethodsZEB1-AS1 expression was analyzed via qRT-PCR analysis. CCK-8, colony formation, flow cytometry and TUNEL assays were used to evaluate TC cell growth. The interaction between miR-133a-3p and LPAR3, EGFR and ZEB1-AS1 was testified through using RNA pull down and luciferase reporter assays.ResultsLPAR3 and EGFR were expressed at high levels in TC tissues and cell lines. Besides, both LPAR3 and EGFR could promote TC cell growth. Later, miR-133a-3p was searched as an upstream gene of LPAR3 and EGFR, and LPAR3 could partially rescue the suppressive effect of miR-133a-3p overexpression on TC progression, whereas the co-transfection of LPAR3 and EGFR completely restored the inhibition. Next, ZEB1-AS1 was confirmed as a sponge of miR-133a-3p. ZEB1-AS1 has a negative correlation with miR-133a-3p and a positive association with LPAR3 and EGFR through ceRNA analysis. Importantly, ZEB1-AS1 boosted the proliferation and suppressed the apoptosis in TC cells. Through restoration assays, we discovered that ZEB1-AS1 regulated LPAR3 and EGFR expression to mediate TC cell proliferation and apoptosis by sponging miR-133a-3p. Further investigation also indicated the oncogenic role of ZEB1-AS1 by mediating PI3K/AKT/mTOR pathway.ConclusionsZEB1-AS1 could be an underlying biomarker in TC.