Project description:Lowland rice roots have a unique physiological response to drought because of their adaptation to flooded soil. Rice root attributes that facilitate growth under flooded conditions may affect rice response to drought, but the relative roles of root structural and functional characteristics for water uptake under drought in rice are not known. Morphological, anatomical, biochemical, and molecular attributes of soil-grown rice roots were measured to investigate the genotypic variability and genotype×environment interactions of water uptake under variable soil water regimes. Drought-resistant genotypes had the lowest night-time bleeding rates of sap from the root system in the field. Diurnal fluctuation predominated as the strongest source of variation for bleeding rates in the field and root hydraulic conductivity (Lpr) in the greenhouse, and was related to expression trends of various PIP and TIP aquaporins. Root anatomy was generally more responsive to drought treatments in drought-resistant genotypes. Suberization and compaction of sclerenchyma layer cells decreased under drought, whereas suberization of the endodermis increased, suggesting differential roles of these two cell layers for the retention of oxygen under flooded conditions (sclerenchyma layer) and retention of water under drought (endodermis). The results of this study point to the genetic variability in responsiveness to drought of rice roots in terms of morphology, anatomy, and function.
Project description:The beneficial element silicon (Si) may affect radial oxygen loss (ROL) of rice roots depending on suberization of the exodermis and lignification of sclerenchyma. Thus, the effect of Si nutrition on the oxidation power of rice roots, suberization and lignification was examined. In addition, Si-induced alterations of the transcript levels of 265 genes related to suberin and lignin synthesis were studied by custom-made microarray and quantitative Real Time-PCR. Without Si supply, the oxidation zone of 12 cm long adventitious roots extended along the entire root length but with Si supply the oxidation zone was restricted to 5 cm behind the root tip. This pattern coincided with enhanced suberization of the exodermis and lignification of sclerenchyma by Si supply. Suberization of the exodermis started, with and without Si supply, at 4-5 cm and 8-9 cm distance from the root tip (drt), respectively. Si significantly increased transcript abundance of 12 genes, while two genes had a reduced transcript level. A gene coding for a leucine-rich repeat protein exhibited a 25-fold higher transcript level with Si nutrition. Physiological, histochemical, and molecular-biological data showing that Si has an active impact on rice root anatomy and gene transcription is presented here.
Project description:This study was performed to study the effect of silicon (Si) nutrition on suberization and lignification in roots of rice. Besides physiological and histochemical examinations of the roots, transcription of candidate genes related to synthesis of suberin and lignin was investigated using microarray analysis. 14 days old rice seedlings (Oryza sativa, cv. Selenio) were cultivated for 28 days in non-aerated nutrient solution (mM: 1.43 NH4NO3, 0.32 NaH2PO4 x H2O, 0.51 K2SO4, 1 CaCl2 x 2 H2O, 1.6 MgSO4 x 7 H2O; µM: 1.82 MnSO4, 0.03 (NH4)6Mo7O24, 9 H3BO3, 0.3 ZnSO4 x 7 H2O and 0.15 CuSO4). The pH-value was adjusted to 6.0 by addition of 10 % (v/v) H2SO4 and 0.75 M KOH.Plants were supplied with Si in form of K2SiO3 at concentrations 0 ppm Si (control) and 50 ppm Si (1.78 mM) and potassium in the control treatment was balanced with K2SO4 supply. The plants were grown in a growth chamber (photoperiod: 14 h light, 10 h dark; temperature 25°C day / 20°C night; relative humidity 75 %; light intensity 220 µmol m2 s-1). Adventitious roots were harvested at 0-2 cm and 4-6 cm distance from the root tip and frozen immediately in liquid nitrogen. For RNA isolation, roots were ground under liquid nitrogen and total RNA was isolated using TRIsure® Reagent (Bioline, Luckenwalde, Germany) following the instructions of the manufacturer. To examine transcription of genes related to suberin and lignin synthesis, a self developed microarray containing amongst others ABC transporter, aclytransferases, ß-ketoacyl-CoA synthases and peroxidases was used .
Project description:abscisic acid (ABA) is a key phytohormone regulating plant development and stress response. The signal transduction of ABA largely relies on protein phosphorylation. However; little is known about the phosphorylation events occurring during ABA signaling in rice thus far. By employing a label-free; MS (Mass Spectrometry)-based phosphoproteomic approach; we identified 2271 phosphosites of young rice seedlings and their intensity dynamics in response to ABA; during which 1060 proteins were found to be differentially phosphorylated. Western-blot analysis verified the differential phosphorylation pattern of D1, SMG1 and SAPK9 as indicated by the MS result; suggesting the high reliability of our phosphoproteomic data. The DP (differentially phosphorylated) proteins are extensively involved in ABA as well as other hormone signaling pathways. It is suggested that ABA antagonistically regulates brassinosteroid (BR) signaling via inhibiting BR receptor activity. The result of this study not only expanded our knowledge of rice phosphoproteome, but also shed more light on the pattern of protein phosphorylation in ABA signaling.
Project description:BackgroundSemi-irrigated aerobic cultivation of rice has been suggested as a potential water saving agronomy. However, suitable cultivars are needed in order to sustain yield levels. An introgression of water mining and water use efficiency (WUE) traits is the most appropriate strategy for a comprehensive genetic enhancement to develop such rice cultivars.ResultsWe report a novel strategy of phenotyping and marker-assisted backcross breeding to introgress water mining (root) and water use efficiency (WUE) traits into a popular high yielding cultivar, IR-64. Trait donor genotypes for root (AC-39020) and WUE (IET-16348) were crossed separately and the resultant F1s were inter-mated to generate double cross F1s (DCF1). Progenies of three generations of backcross followed by selfing were charatcerised for target phenotype and genome integration. A set of 260 trait introgressed lines were identified. Root weight and root length of TILs were 53% and 23.5% higher, while Δ13C was 2.85‰ lower indicating a significant increase in WUE over IR-64. Five best TILs selected from BC3F3 generation showed 52% and 63% increase in yield over IR-64 under 100% and 60% FC, respectively. The trait introgressed lines resembled IR64 with more than 97% of genome recovered with a significant yield advantage under semi-irrigated aerobic conditions The study validated markers identified earlier by association mapping.ConclusionIntrogression of root and WUE into IR64, resulted in an excellent yield advantage even when cultivated under semi-irrigated aerobic condition. The study provided a proof-of-concept that maintaining leaf turgor and carbon metabolism results in improved adaptation to water limited conditions and sustains productivity. A marker based multi-parent backcross breeding is an appropriate approach for trait introgression. The trait introgressed lines developed can be effectively used in future crop improvement programs as donor lines for both root and WUE.
Project description:BackgroundFK506 binding proteins (FKBPs) and cyclophilins (CYPs) are abundant and ubiquitous proteins belonging to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily, which regulate much of metabolism through a chaperone or an isomerization of proline residues during protein folding. They are collectively referred to as immunophilin (IMM), being present in almost all cellular organs. In particular, a number of IMMs relate to environmental stresses.ResultsFKBP and CYP proteins in rice (Oryza sativa cv. Japonica) were identified and classified, and given the appropriate name for each IMM, considering the ortholog-relation with Arabidopsis and Chlamydomonas or molecular weight of the proteins. 29 FKBP and 27 CYP genes can putatively be identified in rice; among them, a number of genes can be putatively classified as orthologs of Arabidopsis IMMs. However, some genes were novel, did not match with those of Arabidopsis and Chlamydomonas, and several genes were paralogs by genetic duplication. Among 56 IMMs in rice, a significant number are regulated by salt and/or desiccation stress. In addition, their expression levels responding to the water-stress have been analyzed in different tissues, and some subcellular IMMs located by means of tagging with GFP protein.ConclusionLike other green photosynthetic organisms such as Arabidopsis (23 FKBPs and 29 CYPs) and Chlamydomonas (23 FKBs and 26 CYNs), rice has the highest number of IMM genes among organisms reported so far, suggesting that the numbers relate closely to photosynthesis. Classification of the putative FKBPs and CYPs in rice provides the information about their evolutional/functional significance when comparisons are drawn with the relatively well studied genera, Arabidopsis and Chlamydomonas. In addition, many of the genes upregulated by water stress offer the possibility of manipulating the stress responses in rice.
Project description:Key messageAssociation analysis for ionomic concentrations of 20 elements identified independent genetic factors underlying the root and shoot ionomes of rice, providing a platform for selecting and dissecting causal genetic variants. Understanding the genetic basis of mineral nutrient acquisition is key to fully describing how terrestrial organisms interact with the non-living environment. Rice (Oryza sativa L.) serves both as a model organism for genetic studies and as an important component of the global food system. Studies in rice ionomics have primarily focused on above ground tissues evaluated from field-grown plants. Here, we describe a comprehensive study of the genetic basis of the rice ionome in both roots and shoots of 6-week-old rice plants for 20 elements using a controlled hydroponics growth system. Building on the wealth of publicly available rice genomic resources, including a panel of 373 diverse rice lines, 4.8 M genome-wide single-nucleotide polymorphisms, single- and multi-marker analysis pipelines, an extensive tome of 321 candidate genes and legacy QTLs from across 15 years of rice genetics literature, we used genome-wide association analysis and biparental QTL analysis to identify 114 genomic regions associated with ionomic variation. The genetic basis for root and shoot ionomes was highly distinct; 78 loci were associated with roots and 36 loci with shoots, with no overlapping genomic regions for the same element across tissues. We further describe the distribution of phenotypic variation across haplotypes and identify candidate genes within highly significant regions associated with sulfur, manganese, cadmium, and molybdenum. Our analysis provides critical insight into the genetic basis of natural phenotypic variation for both root and shoot ionomes in rice and provides a comprehensive resource for dissecting and testing causal genetic variants.
Project description:Background and Aims Root hydraulic limitations (i.e. intra-plant restrictions to water movement) may be related to crop performance under drought, and groupings in the hydraulic function of drought-tolerant and drought-susceptible rice (Oryza sativa) varieties have been previously reported. This study aimed to better understand the environmental and physiological relationships with rice root hydraulics under drought. Methods Xylem sap bleeding rates in the field (gsap g-1shoot) were measured on seasonal and diurnal time frames, during which time environmental conditions were monitored and physiological measurements were conducted. Complementary experiments on the effects of vapour pressure deficit (VPD) on root hydraulic conductivity and on transpiration rates of de-rooted tillers were conducted in growth chambers. Key Results The diurnal effects on bleeding rate were more closely related to irradiance than VPD, and VPD effects on root hydraulic conductivity measured on 21-day-old plants were due to effects on plant growth including root surface area, maximum root depth and root:shoot ratio. Leaf osmotic potential was related to the grouping of drought-tolerant and drought-susceptible varieties in rice root hydraulics, and these groupings were independent of differences in phenology. Low single-tiller bleeding rates were observed under high evapo-transpirational demand, higher bleeding rates were observed at more negative leaf osmotic potentials in drought-susceptible varieties, and drought-tolerant and susceptible varieties differed in the VPD-induced increase in transpiration rates of de-rooted tillers. Low root suberin amounts in some of the drought-susceptible varieties may have resulted in higher ion transport, as evidenced by higher sap K+ concentration and higher bleeding rates in those varieties. Conclusions These results provide evidence of the environmental effects on shoots that can influence root hydraulics. The consistent groupings of drought-tolerant and susceptible varieties suggest that traits affecting plant osmotic status may regulate root hydraulic response to drought in rice.
Project description:Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice (Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, 'Dongdao-4' (moderately alkaline-tolerant) and 'Jiudao-51' (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na2CO3). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan's Blue staining. The expression of the cell death-related genes OsKOD1, OsHsr203j, OsCP1, and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1, was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions ([Formula: see text]) and hydrogen peroxide (H2O2) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to root cells, and will contribute to the improvement of alkaline stress tolerance in rice plants.
Project description:Abscisic acid (ABA) is an essential phytohormone that regulates plant stress responses. ABA receptors in Arabidopsis thaliana (AtPYLs) have been extensively investigated by structural, biochemical, and in vivo studies. In contrast, relatively little is known about the ABA signal transduction cascade in rice. Besides, the diversities of AtPYLs manifest that the information accumulated in Arabidopsis cannot be simply adapted to rice. Thus, studies on rice ABA receptors are compulsory. By taking a bioinformatic approach, we identified twelve ABA receptor orthologs in Oryza sativa (japonica cultivar-group) (OsPYLs), named OsPYL1-12. We have successfully expressed and purified OsPYL1-3, 6 and 10-12 to homogeneity, tested the inhibitory effects on PP2C in Oryza sativa (OsPP2C), and measured their oligomerization states. OsPYL1-3 mainly exhibit as dimers and require ABA to inhibit PP2C's activity. On the contrary, OsPYL6 retains in the monomer-dimer equilibrium state and OsPYL10-11 largely exist as monomers, and they all display an ABA-independent phosphatase inhibition manner. Interestingly, although OsPYL12 seems to be a dimer, it abrogates the phosphatase activity of PP2Cs in the absence of ABA. Toward a further understanding of OsPYLs on the ABA binding and PP2C inhibition, we determined the crystal structure of ABA-OsPYL2-OsPP2C06 complex. The bioinformatic, biochemical and structural analysis of ABA receptors in rice provide important foundations for designing rational ABA-analogues and breeding the stress-resistant rice for commercial agriculture.