Project description:In 2020, African swine fever (ASF) was first identified in German wild boar, reaching a case number of about 4400 to date. Upon experimental infection, pathology is well documented; however, data on field infections are scarce in domestic pigs and not available from wild boar, respectively. Although the ASF viral genome is considered exceptionally stable, a total of five lineages with 10 distinct virus variants of genotype II have emerged in Eastern Germany. To investigate the pathology in naturally infected wild boar and to evaluate virus variants II, III and IV for their virulence, wild boar carcasses were obtained from three different outbreak areas. The carcasses underwent virological and pathomorphological investigation. The animals revealed characteristic ASF lesions of the highest severity accompanied by bacterial infections in several cases. In particular, wild boar infected with variant IV from Spree-Neiße (SN) district showed lower viral genome loads and total viral antigen scores, but simultaneously tended to reveal more chronic lesions. Our findings indicate a protracted course of the disease at least after infection with variant IV, but need confirmation under standardized experimental conditions. There is a strong need to monitor differences in the virulence among variants to identify potential attenuation that might complicate diagnosis. In addition, veterinarians, hunters and farmers need to be made aware of less acute courses of ASF to consider this as an important differential to chronic classical swine fever.
Project description:To control African swine fever (ASF) efficiently, easily interpretable metrics of the outbreak dynamics are needed to plan and adapt the required measures. We found that the spread pattern of African Swine Fever cases in wild boar follows the mechanics of a diffusion process, at least in the early phase, for the cases that occurred in Germany. Following incursion into a previously unaffected area, infection disseminates locally within a naive and abundant wild boar population. Using real case data for Germany, we derive statistics about the time differences and distances between consecutive case reports. With the use of these statistics, we generate an ensemble of random walkers (continuous time random walks, CTRW) that resemble the properties of the observed outbreak pattern as one possible realization of all possible disease dissemination patterns. The trained random walker ensemble yields the diffusion constant, the affected area, and the outbreak velocity of early ASF spread in wild boar. These methods are easy to interpret, robust, and may be adapted for different regions. Therefore, diffusion metrics can be useful descriptors of early disease dynamics and help facilitate efficient control of African Swine Fever.
Project description:African swine fever (ASF) is a fatal hemorrhagic disease of wild boar and domestic pigs which has been present in Poland since 2014. By 2020, the ASF virus (ASFV) spread across Central, Eastern and Western Europe (including Germany), and Asian countries (including China, Vietnam, and South Korea). The national ASF eradication and prevention program includes continuous passive (wild boar found dead and road-killed wild boar) and active (hunted wild boar) surveillance. The main goal of this study was to analyze the dynamic of the spread of ASF in the wild boar population across the territory of Poland in 2020. In that year in Poland, in total 6191 ASF-positive wild boar were declared. Most of them were confirmed in a group of animals found dead. The conducted statistical analysis indicates that the highest chance of obtaining an ASF-positive result in wild boar was during the winter months, from January to March, and in December 2020. Despite the biosecurity measures implemented by holdings of domestic pigs, the disease also occurred in 109 pig farms. The role of ASF surveillance in the wild boar population is crucial to apply more effective and tailored measures of disease control and eradication. The most essential measures to maintain sustainable production of domestic pigs in Poland include effective management of the wild boar population, along with strict implementation of biosecurity measures by domestic pig producers.
Project description:African swine fever (ASF) in wild boar populations is difficult to control. In affected areas, samples from all wild boar shot and found dead are investigated. The use of laboratory tests allows estimating the duration of the infection in affected animals. The study aimed to test the hypothesis that the stage of the epidemic in different areas of Estonia can be assessed on the basis of prevalence estimates. ASF surveillance data of Estonian wild boar were used to estimate prevalences and compare them between the East and West of Estonia. The temporal trend of the estimated prevalence of ASF virus positive animals and of the estimated seroprevalence of wild boar showing antibodies against ASFV was analyzed. Due to the potential influence of population density on the course of ASF in wild boar, also population density data (number of wild boar/km2) were used to investigate the relationship with laboratory test results. In areas, where the epidemic had already lasted for a long time, a small number of new cases emerged recently. The prevalence of samples that were only seropositive was significantly higher in these regions as compared to areas, where the epidemic is in full progress. The observed course of the disease could be the beginning of an ASF endemicity in this region. However, the results may also indicate that ASF has started to subside in the areas that were first affected in Estonia.
Project description:African swine fever (ASF) has been present in Lithuania since 2014. It is mainly the wild boar population that is affected. Currently, little is known about the epidemiological course of ASF in Lithuania. In the present study, ASF surveillance data from 2016-2021 were analyzed. The numbers of samples taken from hunted wild boar and wild boar found dead per year and month were recorded and the prevalence was estimated for each study month and administrative unit. A Bayesian space-time model was used to calculate the temporal trend of the prevalence estimates. In addition, population data were analyzed on a yearly basis. Most samples were investigated in 2016 and 2017 and originated from hunted animals. Prevalence estimates of ASF virus-positive wild boar decreased from May 2019 onwards. Seroprevalence estimates showed a slight decrease at the same time, but they increased again at the end of the study period. A significant decrease in the population density was observed over time. The results of the study show that ASF is still present in the Lithuanian wild boar population. A joint interdisciplinary effort is needed to identify weaknesses in the control of ASF in Lithuania and to combat the disease more successfully.
Project description:The spatial spread of infectious disease is determined by spatial and social processes such as animal space use and family group structure. Yet, the impacts of social processes on spatial spread remain poorly understood and estimates of spatial transmission kernels (STKs) often exclude social structure. Understanding the impacts of social structure on STKs is important for obtaining robust inferences for policy decisions and optimizing response plans. We fit spatially explicit transmission models with different assumptions about contact structure to African swine fever virus surveillance data from eastern Poland from 2014 to 2015 and evaluated how social structure affected inference of STKs and spatial spread. The model with social structure provided better inference of spatial spread, predicted that approximately 80% of transmission events occurred within family groups, and that transmission was weakly female-biased (other models predicted weakly male-biased transmission). In all models, most transmission events were within 1.5 km, with some rare events at longer distances. Effective reproductive numbers were between 1.1 and 2.5 (maximum values between 4 and 8). Social structure can modify spatial transmission dynamics. Accounting for this additional contact heterogeneity in spatial transmission models could provide more robust inferences of STKs for policy decisions, identify best control targets and improve transparency in model uncertainty.
Project description:A wild boar population infected with African Swine Fever (ASF) constitutes a constant threat to commercial pig farms and therefore to the economy of the affected country. Currently, ASF is still spreading in several countries and the implementation of intensive measures such as reducing wild boar population densities seems not to be able to stop the further spread of the disease. In addition, there are still substantial knowledge gaps regarding the epidemiology of the disease. To identify risk factors for a higher probability of a wild boar sample being virological or serological positive, comprehensive statistical analyses were performed based on Latvian surveillance data. Using a multivariable Bayesian regression model, the effects of implemented control measures on the proportion of hunted or found dead wild boar or on the estimated virus prevalence were evaluated. None of the control measures applied in Latvia showed a significant effect on the relevant target figure. Also, the estimated periodic prevalence of wild boar that had tested ASF positive by PCR appeared to remain unaffected over time. Therefore, there is an urgent need to reconsider the implemented control measures. The results of this study and the course of ASF in other affected countries, raise the question, whether an endemic situation of ASF in wild boar is reversible.
Project description:Understanding the transmission patterns of African swine fever (ASF) among wild boar (Sus scrofa) is an issue of major interest, especially in the wake of the current ASF epidemic. Given the high stability of ASF-virus, there is concern about scavengers spreading infectious carcass material in the environment. Here, we describe scavenging activities on 32 wild boar carcasses in their natural habitat in Germany. Using digital cameras, we detected 22 vertebrates at the study sites, thereof two mammal and three bird species scavenging. The most frequently detected species was the raccoon dog Nyctereutes procyonoides (44% of all visits). Raccoon dogs, red foxes (Vulpes vulpes), and buzzards (Buteo buteo) scavenged in the warm and the cold season, while ravens (Corvus corax) and white-tailed eagles (Haliaeetus albicilla) scavenged only in the cold season. In summer, however, insects removed most of the carcass biomass. Although most of the material was consumed on the spot, foxes, raccoon dogs and ravens left the study sites in rare cases with a small piece of meat in their mouths or beaks. We conclude that scavengers represent a minor risk factor for spreading ASF, but may contribute to reducing local virus persistence by metabolizing infected carcasses.
Project description:The first cases of African swine fever (ASF) were detected in the Lithuanian wild boar population in 2014. Since then, the disease spread slowly through the whole country, affecting both, wild boar and domestic pigs. In the other Baltic states, which both are also affected by ASF since 2014, the recent course of ASF prevalence suggests that the countries might be well under way of disease elimination. In contrast, in Lithuania the epidemic seems to be still in full progress. In the present study, we aimed to extend a previous prevalence study in Lithuania. Looking at ASF virus (ASFV) and seroprevalence estimates of wild boar in all months of 2018 and in all affected municipalities in Lithuania, the course of ASF was evaluated on a temporal and spatial scale. A non-spatial beta-binomial model was used to correct for under- or overestimation of the average prevalence estimates. Within 2018 no big differences between the prevalence estimates were seen over time. Despite of the lower sample size, highest ASFV prevalence estimates were found in dead wild boar, suggesting higher detection rates through passive surveillance than through active surveillance. Accordingly, with the maximum prevalence of 87.5% in May 2018, the ASFV prevalence estimates were very high in wild boar found dead. The number of samples originating from hunted animals (active surveillance) predominated clearly. However, the ASFV prevalence in those animals was lower with a maximum value of 2.1%, emphasizing the high value of passive surveillance. A slight increase of the seroprevalence in hunted wild boar could be seen over time. In the center of Lithuania, a cluster of municipalities with high ASFV and seroprevalence estimates was found. The results of the study indicate that ASFV is still circulating within the Lithuanian wild boar population, constituting a permanent risk of disease transmission into domestic pig holdings. However, additional, more recent data analyses are necessary to re-evaluate the course of ASF in Lithuania and thus, to be able to make a statement about the stage of the ASF epidemic in the country. This is of huge importance for Lithuania for evaluating control measures and their efficacy, but also for neighbouring countries to assess the risk of disease spread from Lithuania.