Project description:Neural-Wiskott Aldrich Syndrome Protein (N-WASP) is expressed ubiquitously, regulates actin polymerization and is essential during mouse development. We have previously shown that N-WASP is critical for cell-ECM adhesion in fibroblasts. To characterize the role of N-WASP in fibroblast for skin development, we generated a conditional knockout mouse model in which fibroblast N-WASP was ablated using the Cre recombinase driven by Fibroblast Specific Protein promoter (Fsp-Cre). N-WASPFKO (N-WASPfl/fl; Fsp-cre) were born following Mendelian genetics, survived without any visible abnormalities for more than 1 year and were sexually reproductive, suggesting that expression of N-WASP in fibroblast is not critical for survival under laboratory conditions. Histological sections of N-WASPFKO mice skin (13 weeks old) showed thicker epidermis with higher percentage of cells staining for proliferation marker (PCNA), suggesting that N-WASP deficient fibroblasts promote keratinocyte proliferation. N-WASPFKO mice skin had elevated collagen content, elevated expression of FGF7 (keratinocyte growth factor) and TGFβ signaling proteins. Wound healing was faster in N-WASPFKO mice compared to control mice and N-WASP deficient fibroblasts were found to have enhanced collagen gel contraction properties. These results suggest that N-WASP deficiency in fibroblasts improves wound healing by growth factor-mediated enhancement of keratinocyte proliferation and increased wound contraction in mice.
Project description:Tumor nests in lung squamous cell carcinoma (LUSC) have a hierarchical structure resembling squamous epithelium. The nests consist of basal-like cells on the periphery and layers of keratinocyte-like cells that differentiate towards the center of the nest, forming keratin pearls. Reproducing this spatial heterogeneity in in vitro models would be useful for understanding the biology of LUSC. Here, we established a three-dimensional (3D) culture model with a squamous epithelial structure using LUSC cell lines PLR327F-LD41 and MCC001F, established in-house. When PLR327F-LD41 cells were cultured in a mixture of Matrigel and collagen I, they generated 3D colonies (designated cancer organoids, or COs) with involucrin (IVL)-positive keratinizing cells in the center (IVLinner COs). COs with uniform size were generated by seeding PLR327F-LD41 cells in a form of small cell aggregates. Since Notch signaling induces the differentiation of squamous epithelium, we confirmed the effect of γ-secretase inhibitor in inhibiting Notch signaling in IVLinner COs. Surprisingly, γ-secretase inhibitor did not block induction of IVL-positive cells; however, cells residing between the CK5-positive basal-like layer and IVL-positive layer decreased significantly. Thus, our 3D culture model with uniform size and structure promises to be a useful tool for elucidating the biology of LUSC and for screening drug-candidates.
Project description:Squamous cell carcinoma of the sinonasal tract is relatively rare and morphologically and genetically heterogeneous. We report the case of an adult male with a left sphenoid sinus mass. A biopsy revealed an undifferentiated carcinoma composed of sheets of epithelioid cells lacking keratinization and glandular formation. The tumor was associated with a prominent lymphoplasmacytic inflammatory infiltrate. Immunohistochemical staining demonstrated diffuse expression of pankeratin and p63; it was negative for p16. In addition, EBER was also negative. Morphologically the findings raised the possibility of non-keratinizing squamous cell carcinoma. RNA sequencing was undertaken to exclude the possibility of NUT carcinoma; interestingly, this revealed a novel ETV6-TNFRSF8 fusion transcript, which was independently confirmed by fluorescence in situ hybridization. The current case is illustrative because it broadens our understanding of the molecular pathogenesis of non-keratinizing squamous cell carcinoma and adds to the diversity of ETV6-rearranged malignancies.
Project description:Somatic activation of a conditional targeted Kras(G12D) allele induces a fatal myeloproliferative disease in mice that closely models juvenile and chronic myelomonocytic leukemia. These mice consistently develop severe and progressive anemia despite adequate numbers of clonogenic erythroid progenitors in the bone marrow and expanded splenic hematopoiesis. Ineffective erythropoiesis is characterized by impaired differentiation. These results demonstrate that endogenous levels of oncogenic Ras have cell lineage-specific effects and support efforts to modulate Ras signaling for therapy of anemia in patients with myelodysplastic syndromes and myeloproliferative disorders.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is a particularly deadly disease. Chronic conditions, including obesity and type-2 diabetes are risk factors, thus making PDAC amenable to preventive strategies. We aimed to characterize the chemo-preventive effects of metformin, a widely used anti-diabetic drug, on PDAC development using the KrasG12D mouse model subjected to a diet high in fats and calories (HFCD). LSL-KrasG12D/+;p48-Cre (KC) mice were given control diet (CD), HFCD, or HFCD with 5 mg/ml metformin in drinking water for 3 or 9 months. After 3 months, metformin prevented HFCD-induced weight gain, hepatic steatosis, depletion of intact acini, formation of advanced PanIN lesions, and stimulation of ERK and mTORC1 in pancreas. In addition to reversing hepatic and pancreatic histopathology, metformin normalized HFCD-induced hyperinsulinemia and hyperleptinemia among the 9-month cohort. Importantly, the HFCD-increased PDAC incidence was completely abrogated by metformin (p < 0.01). The obesogenic diet also induced a marked increase in the expression of TAZ in pancreas, an effect abrogated by metformin. In conclusion, administration of metformin improved the metabolic profile and eliminated the promoting effects of diet-induced obesity on PDAC formation in KC mice. Given the established safety profile of metformin, our findings have a strong translational potential for novel chemo-preventive strategies for PDAC.
Project description:PRAS40 (Prolin-rich Akt substrate of 40 kDa) is a critical protein, which directly connects PI3K/Akt and mTORC1 pathway. It plays an indispensable role in the development of various diseases. However, the relationship between PRAS40 and head and neck squamous cell carcinoma (HNSCC) remains unclear. Here, our study indicated that high expression of PRAS40 mRNA is a favorable prognostic factor in HNSCC patients by analyzing 498 clinical and mRNA data. Moreover, we confirmed that CRISPR/Cas9 induced PRAS40-knockout would promote colony formation, cell migration, and invasion in several HNSCC cell lines. RNA-seq was employed to investigate the further possible mechanisms involving the above regulations by PRAS40 in HNSCC cells. The molecular landscape contributed by 253 differentially expressed mRNA after PRAS40-knockout was enriched in TGF-beta, PI3K-Akt, P53, mTOR, NF-κB signaling pathway. Partial molecular alternations within these pathways were validated by qPCR or Western blotting. Besides, we found that high expression of PRAS40 in HNSC patients would present more CD8+ T and T follicular helper cells, but less Th17 cells than the patients with low expression of PRAS40. The altered molecular pathways and tumor-infiltrating immune cells might associate with the mechanism of PRAS40 being a suppressor in HNSCC cells, which would provide a potential prognostic predictor and therapeutic target in HNSCC patients.
Project description:BackgroundMetabolic reprograming is now a recognized hallmark of cancer. The prostate-specific phosphatase and tensin homolog deleted on chromosome 10 (Pten) gene-conditional knockout (KO) mouse carcinogenesis model is highly desirable for studying prostate cancer biology and prevention due to its close resemblance of primary molecular defects and histopathological features of human prostate cancer. We have recently published macromolecular profiling of this model by proteomics and transcriptomics, denoting a preeminence of inflammation and myeloid suppressive immune cell features. Here, we performed metabolomic analyses of Pten-KO prostate versus wild type (WT) counterpart for discernable changes in the aqueous metabolites and contrasted to those in the TRAMP neuroendocrine carcinoma (NECa).MethodsThree matched pairs of tissue-specific conditional Pten-KO mouse prostate and WT prostate of litter/cage-mates at 20-22 weeks of age and three pairs of TRAMP NECa versus WT (28-31 weeks) were profiled for their global aqueous metabolite changes, using hydrophilic interaction liquid chromatography-tandem mass spectrometry.ResultsThe Pten-KO prostate increased purine nucleotide pools, cystathionine, and both reduced and oxidized glutathione (GSH, GSSG), and gluconate/glucuronate species in addition to cholesteryl sulfate and polyamine precursor ornithine. On the contrary, Pten-KO prostate contained diminished pools of glycolytic intermediates and phosphorylcholine derivatives, select amino acids, and their metabolites. Bioinformatic integration revealed a significant shunting of glucose away from glycolysis-citrate cycle and glycerol-lipid genesis to pentose phosphate cycle for NADPH/GSH/GSSG redox and pentose moieties for purine and pyrimidine nucleotides, and glycosylation/glucuronidation. Implicit arginine catabolism to ornithine was consistent with immunosuppression in Pten-KO model. While also increased in cystathionine-GSH/GSSG, purine, and pyrimidine nucleotide pools and glucuronidation at the expense of glycolysis-citrate cycle, the TRAMP NECa increased abundance of many amino acids, methyl donor S-adenosyl-methionine, and intermediates for phospholipids without increasing cholesteryl sulfate or ornithine.ConclusionsThe aqueous metabolomic patterns in Pten-KO prostate and TRAMP NECa shared similarities in the greater pools of cystathionine, GSH/GSSG redox pair, and nucleotides and shunting away from glycolysis-citrate cycle in both models. Remarkable metabolic distinctions between them included metabolisms of many amino acids (protein synthesis; arginine-ornithine/immune suppression) and cholesteryl sulfate and methylation donor for epigenetic regulations.
Project description:ObjectiveTo analyze conditional survival estimates of patients with esophageal cancer who underwent curative resection.Summary background dataConditional survival reflects dynamic prognosis updated to the current status and is a more relevant indicator for current healthcare and life decisions.MethodsThis study included 1883 patients who underwent complete resection for esophageal squamous cell carcinoma at a tertiary cancer center from 1994 to 2016. We calculated 5-year (5Y) conditional overall survival (COS), conditional recurrence-free survival (CRFS), and conditional relative survival (CRS) estimates from diagnosis to 5 years of survival.ResultsThe 5Y COS, CRFS, and CRS increased from 63.7%, 65.2%, and 70.2% at diagnosis to 75.8%, 91.9%, and 86.4 at 5 years after diagnosis, respectively. While there were large differences with different stages (stage I, II, III) at diagnosis (81.2%, 64.9%, and 37.3% for COS; 85.1, 65.1%, and 67.9% for CRFS; 89.2%, 72.1%, and 41.1% for CRS), the gap decreased with time; rates were similar after 5 years (77.1%, 75.7%, and 72.6% for COS; 91.7%, 90.6%, and 94.5% for CRFS, and 89.3%, 85.4%, and 78.3% in CRS, respectively). The 5Y COS, CRFS, and CRS were persistently lower in older patients even after 5 years.ConclusionsConditional survival estimates generally increase over time, and the largest improvements were observed for patients with advanced stage. Availability of updated prognosis at various time points allows clinicians to better guide their patients. Our results also imply substantial residual risk of recurrence and sustained excess mortality compared to the general population even after 5 years.
Project description:The Id3 gene has been shown to play important roles in the development and function of broad tissue types including B and T cells. Id3 deficient mice develop autoimmune disease similar to human Sjögren's syndrome. Both B and T lymphocytes have been implicated to contribute to the disease phenotype in this disease model. In order to gain a better understanding of individual cell types in this disease model, we generated an Id3 conditional allele. An LckCre transgene was used to induce Id3 deletion in developing T cells. We showed that the Id3 gene was efficiently disrupted in early thymocyte development prior to T cell receptor (TCR)-mediated positive selection. Consequently, thymocyte maturation was impaired in the conditional knockout mice. These mice developed exocrinopathy starting at two months of age and subsequently exhibited high incidence of lymphocyte infiltration to salivary glands between eight and 12 months of age. This progressive feature of disease development is very similar to those observed in Id3 germline knockout mice. This study establishes a new model for investigating the relationship between T cell development and autoimmune disease. Our observation provides an experimental case that autoimmune disease may be induced by acquired mutation in developing T cells.