Project description:Assessment of genetic diversity and relatedness is an essential component of germplasm characterization and use. We analyzed 120 mango (Mangifera indica L.) genetic resources in Japan for their parentage, cultivar identification, genetic relatedness, and genetic diversity, using 46 polymorphic simple sequence repeat (SSR) markers. Ten sets of three SSR markers could successfully distinguish 83 genotypes with the exception of synonymous and identical accessions. We successfully assessed parentage, newly identifying or reconfirming both parents of 11 accessions, and revealing over 30 cultivars as offspring of 'Haden'. Genetic relatedness and diversity analyses revealed three distinct clusters. Two clusters correspond to the groups of USA and India, which are closely related. The other includes accessions from Southeast and East Asia. The results agree with the previous identification of genetically distinct Indian and Southeast Asian types, and suggest that the Florida accessions, which originated from hybrids between those two types, are more closely related to the Indian type.
Project description:Sesame (Sesamum indicum L.) is an ancient oilseed crop known for its nutty seeds and high-quality edible oil. It is an unexplored crop with a great economic potential. The present study deals with assessment of genetic diversity in the crop. Twenty two RAPD and 18 SSR primers were used for analysis of the 47 different sesame accessions grown in different agroclimatic zones of India. A total of 256 bands were obtained with RAPD primers, of which 191 were polymorphic. SSR primers gave 64 DNA bands, of which all of were polymorphic. The Jaccard's similarity coefficient of RAPD, SSR, and pooled RAPD and SSR data ranged from 0.510 to 0.885, 0.167 to 0.867, and 0.505 to 0.853, respectively. Maximum polymorphic information content was reported with SSRs (0.194) compared to RAPDs (0.186). Higher marker index was observed with RAPDs (1.426) than with SSRs (0.621). Similarly, maximum resolving power was found with RAPD (4.012) primers than with SSRs (0.884). The RAPD primer RPI-B11 and SSR primer S16 were the most informative in terms of describing genetic variability among the varieties under study. At a molecular level, the seed coat colour was distinguishable by the presence and absence of a group of marker amplicon/s. White and brown seeded varieties clustered close to each other, while black seeded varieties remained distanced from the cluster. In the present study, we found higher variability in Sesamum indicum L. using RAPD and SSR markers and these could assist in DNA finger printing, conservation of germplasm, and crop improvement.
Project description:Chrysanthemum morifolium, is a well-known flowering plant worldwide, and has a high commercial, floricultural, and medicinal value. In this study, simple-sequence repeat (SSR) markers were generated from EST datasets and were applied to assess the genetic diversity among 32 cultivars. A total of 218 in silico SSR loci were identified from 7300 C. morifolium ESTs retrieved from GenBank. Of all SSR loci, 61.47% of them (134) were hexa-nucleotide repeats, followed by tri-nucleotide repeats (17.89%), di-nucleotide repeats (12.39%), tetra-nucleotide repeats (4.13%), and penta-nucleotide repeats (4.13%). In this study, 17 novel EST-SSR markers were verified. Along with 38 SSR markers reported previously, 55 C. morifolium SSR markers were selected for further genetic diversity analysis. PCR amplification of these EST-SSRs produced 1319 fragments, 1306 of which showed polymorphism. The average polymorphism information content of the SSR primer pairs was 0.972 (0.938-0.993), which showed high genetic diversity among C. morifolium cultivars. Based on SSR markers, 32 C. morifolium cultivars were separated into two main groups by partitioning of the clusters using the unweighted pair group method with arithmetic mean dendrogram, which was further supported by a principal coordinate analysis plot. Phylogenetic relationship among C. morifolium cultivars as revealed by SSR markers was highly consistent with the classification of medicinal C. morifolium populations according to their origin and ecological distribution. Our results demonstrated that SSR markers were highly reproducible and informative, and could be used to evaluate genetic diversity and relationships among medicinal C. morifolium cultivars.
Project description:Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC), with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs.
Project description:Knowledge about the genetic diversity of the available common bean germplasm can help breeders properly direct the choice of genetic material in the breeding process. The aim of the present work was to estimate the usefulness of 10 RAPD and 10 SCoT markers in genetic diversity detection among 33 common bean genotypes. Both molecular marker systems were able to generate high levels of polymorphism in the genetic material, which was supported by the relatively high polymorphic information content (PIC) values observed for the used markers. The Diversity Detection Index (DDI) and Marker Index (MI) were used to compare the effectiveness of RAPD and SCoT markers. For both techniques, high values of MI and DDI were calculated, representing their effectivity. The SCoT markers showed higher values of the parameters used (MI = 7.474, DI = 2.265) than the RAPD markers (MI = 5.323, DDI = 1.612), indicating their higher efficiency in the detection of molecular variability. Three constructed dendrograms and PCoA plots were created using RAPD and SCoT, and both methods combined confirmed sufficient separation of the bean genotypes from each other. At the same time, a higher efficiency of SCoT markers compared to RAPD markers in the detection of the genetic diversity of beans was also proven. The results may be of future interest in the choice of genetically distant material for breeding purposes.
Project description:The primary aim of this study was to estimate genetic diversity among Secale cereale L. accessions using 22 previously published simple sequence repeat (SSR) markers. The plant material included 367 rye accessions comprising historical and contemporary cultivars, cultivated materials, landraces, and breeding strains from the Polish breeding company Danko. The studied accessions represented a wide geographical diversity. Several methods were employed to analyze genetic diversity among the Secale cereale L. accessions and to determine population structure: principal coordinate analysis (PCoA), neighbor-joining (NJ), and Bayesian clustering. We also defined a core collection of 25 rye accessions representing over 93 % of SSR alleles. The results of these analyses showed that accessions from the rye gene bank are clearly divergent in comparison with materials received directly from European breeding companies. Our findings suggest also that the genetic pool of current rye cultivars is becoming narrower during breeding processes. The selected panel of SSR markers performed well in detection of genetic diversity patterns and can be recommended for future germplasm characterization studies in rye.
Project description:BackgroundThe genetic base of soybean cultivars in India has been reported to be extremely narrow, due to repeated use of few selected and elite genotypes as parents in the breeding programmes. This ultimately led to the reduction of genetic variability among existing soybean cultivars and stagnation in crop yield. Thus in order to enhance production and productivity of soybean, broadening of genetic base and exploring untapped valuable genetic diversity has become quite indispensable. This could be successfully accomplished through molecular characterization of soybean genotypes using various DNA based markers. Hence, an attempt was made to study the molecular divergence and relatedness among 29 genotypes of soybean using SSR markers.Methods and resultsA total of 35 SSR primers were deployed to study the genetic divergence among 29 genotypes of soybean. Among them, 14 primer pairs were found to be polymorphic producing a total of 34 polymorphic alleles; and the allele number for each locus ranged from two to four with an average of 2.43 alleles per primer pair. Polymorphic information content (PIC) values of SSRs ranged from 0.064 to 0.689 with an average of 0.331. The dendrogram constructed based on dissimilarity indices clustered the 29 genotypes into two major groups and four sub-groups. Similarly, principal coordinate analysis grouped the genotypes into four major groups that exactly corresponded to the clustering of genotypes among four sub-groups of dendrogram. Besides, the study has reported eight unique and two rare alleles that could be potentially utilized for genetic purity analysis and cultivar identification in soybean.ConclusionIn the present investigation, two major clusters were reported and grouping of large number of genotypes in each cluster indicated high degree of genetic resemblance and narrow genetic base among the genotypes used in the study. With respect to the primers used in the study, the values of PIC and other related parameters revealed that the selected SSR markers are moderately informative and could be potentially utilized for diversity analysis of soybean. The clustering pattern of dendrogram constructed based on SSR loci profile displayed good agreement with the cultivar's pedigree information. High level of genetic similarity observed among the genotypes from the present study necessitates the inclusion of wild relatives, land races and traditional cultivars in future soybean breeding programmes to widen the crop gene pool. Thus, hybridization among diverse gene pool could result in more heterotic combinations ultimately enhancing genetic gain, crop yield and resistance to various stress factors.
Project description:Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), genetic variation within the populations (87.85%) were remarkably higher than among populations (12.15%). The average gene flow (Nm = 1.8080) significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages) dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km) among populations (r = 0.419, P = 0.005), suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic distance. These data provide comprehensive information for the development of conservation strategies of these valuable hazelnut resources.
Project description:Increase in food production viz-a-viz quality of food is important to feed the growing human population to attain food as well as nutritional security. The availability of diverse germplasm of any crop is an important genetic resource to mine the genes that may assist in attaining food as well as nutritional security. Here we used 15 RAPD and 23 SSR markers to elucidate diversity among 51 common bean genotypes mostly landraces collected from the Himalayan region of Jammu and Kashmir, India. We observed that both the markers are highly polymorphic. The discriminatory power of these markers was determined using various parameters like; percent polymorphism, PIC, resolving power and marker index. 15 RAPDs produced 171 polymorphic bands, while 23 SSRs produced 268 polymorphic bands. SSRs showed a higher PIC value (0.300) compared to RAPDs (0.243). Further the resolving power of SSRs was 5.241 compared to 3.86 for RAPDs. However, RAPDs showed a higher marker index (2.69) compared to SSRs (1.279) that may be attributed to their higher multiplex ratio. The dendrograms generated with hierarchical UPGMA cluster analysis grouped genotypes into two main clusters with various degrees of sub clustering within the cluster. Here we observed that both the marker systems showed comparable accuracy in grouping genotypes of common bean according to their area of cultivation. The model based STRUCTURE analysis using 15 RAPD and 23 SSR markers identified a population with 3 sub-populations which corresponds to distance based groupings. High level of genetic diversity was observed within the population. These findings have further implications in common bean breeding as well as conservation programs.