Unknown

Dataset Information

0

The influence of dual-energy computed tomography image noise in proton therapy treatment planning.


ABSTRACT:

Background and purpose

In proton therapy, a 3.5% margin is often used to account for proton range uncertainties, of which computed tomography (CT) image noise is assumed to contribute 0.5%. This work evaluates the noise-sensitivity of three dual-energy computed tomography (DECT)-based methods for mapping proton stopping power relative to water (SPR): Näsmark & Andersson (N&A), Landry-Saito (L-S), and the commercial application DirectSPR.

Methods and materials

DECT image data of a CIRS-062M phantom was acquired with CT scanners from two different vendors. Acquisitions were repeated 30 times to account for intra- and inter-scan variations. SPR maps were generated with the three DECT-based methods and range simulated in a commercial treatment planning system.

Results

Noise in input data was amplified in L-S SPR maps, kept level with DirectSPR, while N&A compressed noise overall but displayed sensitivity to the choice of input data, potentially leading to increased noise levels. In our simulations, only N&A improved upon the assumed 0.5% noise contribution to range uncertainty on one scanner. On the other scanner, uncertainties exceeded 0.5% for all three methods. Mitigation of this issue was demonstrated by using a method employing virtual mono-energetic images as input. Increasing imaging radiation dose, as expected, alleviates the problem, while applying noise reduction only helped to a lesser extent.

Conclusions

While range uncertainty due to noise is small compared to other contributions, it becomes more important as we move towards smaller treatment margins and the noise-sensitivity of SPR mapping methods should be carefully estimated and considered before clinical implementation.

SUBMITTER: Nasmark T 

PROVIDER: S-EPMC10544042 | biostudies-literature | 2023 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

The influence of dual-energy computed tomography image noise in proton therapy treatment planning.

Näsmark Torbjörn T   Andersson Jonas J  

Physics and imaging in radiation oncology 20230920


<h4>Background and purpose</h4>In proton therapy, a 3.5% margin is often used to account for proton range uncertainties, of which computed tomography (CT) image noise is assumed to contribute 0.5%. This work evaluates the noise-sensitivity of three dual-energy computed tomography (DECT)-based methods for mapping proton stopping power relative to water (SPR): Näsmark & Andersson (N&A), Landry-Saito (L-S), and the commercial application DirectSPR.<h4>Methods and materials</h4>DECT image data of a  ...[more]

Similar Datasets

| S-EPMC6753738 | biostudies-literature
| S-EPMC6145159 | biostudies-literature
| S-EPMC7286188 | biostudies-literature
| S-EPMC11381754 | biostudies-literature
| S-EPMC6342763 | biostudies-literature
| S-EPMC11652005 | biostudies-literature
| S-EPMC9556609 | biostudies-literature
| S-EPMC9735597 | biostudies-literature
| S-EPMC5505266 | biostudies-literature