Project description:Fruits are an important part of the human diet and sugar content is a major criterion used to evaluate fruit quality. Melon fruit accumulate high sugar concentrations during their development; however, the mechanism through which these sugars are transported into the vacuoles of fruit cells for storage remains unclear. In this study, three tonoplast sugar transporters (TSTs), CmTST1, CmTST2, and CmTST3, were isolated from melon plants. Analysis of subcellular localization revealed that all these proteins were targeted to the tonoplast, and evaluation of spatial expression and promoter-GUS activity indicated that they had different expression patterns in the plant. RT-PCR and qRT-PCR results indicated that CmTST2 exhibited the highest expression level among the TST isoforms during melon fruit development. Histochemical and immunohistochemistry localization experiments were performed to identify the tissue- and cell-type localization of CmTST2 in the fruit, and the results indicated that both its transcription and translation were in the mesocarp and vascular cells. Overexpressing the CmTST2 gene in strawberry fruit and cucumber plants by transient expression and stable transformation, respectively, both increased sucrose, fructose, and glucose accumulation in the fruit. The results indicate that CmTST2 plays an important role in sugar accumulation in melon fruit.
Project description:Fruit taste quality is greatly influenced by the content of soluble sugars, which are predominantly stored in the vacuolar lumen. However, the accumulation and regulation mechanisms of sugars in most fruits remain unclear. Recently, we established the citrus fruit vacuole proteome and discovered the major transporters localized in the vacuole membrane. Here, we demonstrated that the expression of tonoplast sugar transporter 2 (CsTST2) is closely associated with sugar accumulation during sweet orange (Citrus sinensis) ripening. It was further demonstrated that CsTST2 had the function of transporting hexose and sucrose into the vacuole. Overexpression of CsTST2 resulted in an elevation of sugar content in citrus juice sac, calli, and tomato fruit, whereas the downregulation of its expression led to the reduction in sugar levels. CsTST2 was identified as interacting with CsCIPK23, which binds to the upstream calcium signal sensor protein CsCBL1. The phosphorylation of the three serine residues (Ser277, Ser337, and Ser354) in the loop region of CsTST2 by CsCIPK23 is crucial for maintaining the sugar transport activity of CsTST2. Additionally, the expression of CsCIPK23 is positively correlated with sugar content. Genetic evidence further confirmed that calcium and CsCIPK23-mediated increase in sugar accumulation depends on CsTST2 and its phosphorylation level. These findings not only unveil the functional mechanism of CsTST2 in sugar accumulation, but also explore a vital calcium signal regulation module of CsCBL1/CIPK23 for citrus sweetness quality.
Project description:The main phloem loader in potato, sucrose transporter StSUT1, is coexpressed with 2 members of the SWEET gene family: StSWEET11b, a clade III member of SWEET carriers assumed to be involved in sucrose efflux, and StSWEET1g, a clade I member involved in glucose efflux into the apoplast, that physically interacts with StSUT1. We investigated the functionality of SWEET carriers via uptake experiments with fluorescent glucose or sucrose analogs. Inhibition or overexpression of StSWEET1g/SlSWEET1e affected tuberization and flowering in transgenic potato plants. Isolation of the apoplasmic fluid by vacuum infiltration centrifugation revealed changes in the apoplasmic hexose composition and mono-to-disaccharide ratio, affecting sink strength. Downregulation of StSWEET1g expression affected the expression of SP6A, a tuberigen, and miR172 under long-day conditions, leading to early flowering and tuberization. A systematic screen for StSWEET1g-interacting protein partners revealed several proteins affecting cell wall integrity and strengthening. StSWEET1g and the main interaction partners were strongly downregulated during tuber development. We discuss whether StSWEET1g activity might be linked to cell wall remodeling during tuber development and the switch from apoplasmic to symplasmic phloem unloading.
Project description:Tubers are vegetative reproduction organs formed from underground extensions of the plant stem. Potato tubers are harvested and stored for months. Storage under cold temperatures of 2 - 4 °C is advantageous for supressing sprouting and diseases. However, development of reducing sugars can occur with cold storage through a process called cold-induced sweetening (CIS). CIS is undesirable as it leads to darkened color with fry processing. The purpose of the current study was to find differences in biological responses in eight cultivars with variation in CIS resistance. Transcriptome sequencing was done on tubers before and after cold storage and three approaches were taken for gene expression analysis: 1. Gene expression correlated with end-point glucose after cold storage, 2. Gene expression correlated with increased glucose after cold storage (after-before), and 3. Differential gene expression before and after cold storage. Cultivars with high CIS resistance (low glucose after cold) were found to increase expression of an invertase inhibitor gene and genes involved in DNA replication and repair after cold storage. The cultivars with low CIS resistance (high glucose after cold) showed increased expression of genes involved in abiotic stress response, gene expression, protein turnover and the mitochondria. There was a small number of genes with similar expression patterns for all cultivars including genes involved in cell wall strengthening and phospholipases. It is proposed that the pattern of gene expression is related to chilling-induced DNA damage repair and cold acclimation and that genetic variation in these processes are related to CIS.
Project description:Sugar content is related to fruit sweetness, and the complex mechanisms underlying fruit sugar accumulation still remain elusive. Here, we report a peach PpTST1 gene encoding tonoplast sugar transporter that is located in the quantitative trait loci (QTL) interval on Chr5 controlling fruit sucrose content. One derived Cleaved Amplified Polymorphic Sequence (dCAPS) marker was developed based on a nonsynonymous G/T variant in the third exon of PpTST1. Genotyping of peach cultivars with the dCAPS marker revealed a significant difference in fruit sugar content among genotypes. PpTST1 is located in the tonoplast, and substitution of glutamine by histidine caused by the G/T variation has no impact on subcellular location. The expression profile of PpTST1 exhibited a consistency with the sugar accumulation pattern, and its transient silencing significantly inhibited sugar accumulation in peach fruits. All of these results demonstrated the role of PpTST1 in regulating sugar accumulation in peach fruit. In addition, cis-elements for binding of MYB and WRKY transcript factors were found in the promoter sequence of PpTST1, suggesting a gene regulatory network of fruit sugar accumulation. Our results are not only helpful for understanding the mechanisms underlying fruit sugar accumulation, but will also be useful for the genetic improvement of fruit sweetness in peach breeding programs.
Project description:Sugar allocation is based on the source-to-sink and intracellular transport between different organelles, and sugar transporters are usually involved in these processes. Tonoplast sugar transporters (TST) are responsible for transporting sugar into vacuoles; however, the role of TSTs in root growth and the response to abiotic stress is poorly studied. Here, RNA analysis and promoter-β-glucuronidase staining revealed that a melon TST1 gene (CmTST1) is highly expressed in the roots. The sugar feeding experiment results showed that the expression of CmTST1 in the roots was induced by a relatively high level of sucrose (6%), glucose (3%), and fructose (3%). The ectopic overexpression of CmTST1 in Arabidopsis improved the root and shoot growth of seedlings under high exogenous sugar stress. Furthermore, the ectopic expression of CmTST1 promoted the expression of plasma membrane-located sugar transporters. We proposed that CmTST1 plays a key role in importing sugar transport into the vacuoles of roots in response to metabolic demands to maintain cytosolic sugar homeostasis.
Project description:We report on the kiwifruit postharvest phase through an approach consisting of 2D-DIGE/nanoLC-ESI-LIT-MS/MS-based proteomic measurements. Kiwifruit samples stored under conventional, cold-based postharvest conditions were sampled at four stages (from fruit harvest to pre-commercialization) and analyzed in comparison protein content. Proteomics showed that proteins associated with disease/defense, energy, protein destination/storage, cell structure and metabolism functions were affected at precise fruit postharvest times. By lining up kiwifruit postharvest processing to a proteomic depiction, this study integrates previous observations on protein content in postharvest pomes treated with specific chemical additives, and provides a reference framework for further studies on the optimization of fruit storage before its commercialization.
Project description:BackgroundStored potato (Solanum tuberosum L.) tubers are sensitive to wet conditions that can cause rotting in long-term storage. To study the effect of water on the tuber surface during storage, microarray analysis, RNA-Seq profiling, qRT-PCR and phytohormone measurements were performed to study gene expression and hormone content in wet tubers incubated at two temperatures: 4 °C and 15 °C. The growth of the plants was also observed in a greenhouse after the incubation of tubers in wet conditions.ResultsWet conditions induced a low-oxygen response, suggesting reduced oxygen availability in wet tubers at both temperatures when compared to that in the corresponding dry samples. Wet conditions induced genes coding for heat shock proteins, as well as proteins involved in fermentative energy production and defense against reactive oxygen species (ROS), which are transcripts that have been previously associated with low-oxygen stress in hypoxic or anoxic conditions. Wet treatment also induced senescence-related gene expression and genes involved in cell wall loosening, but downregulated genes encoding protease inhibitors and proteins involved in chloroplast functions and in the biosynthesis of secondary metabolites. Many genes involved in the production of phytohormones and signaling were also affected by wet conditions, suggesting altered regulation of growth by wet conditions. Hormone measurements after incubation showed increased salicylic acid (SA), abscisic acid (ABA) and auxin (IAA) concentrations as well as reduced production of jasmonate 12-oxo-phytodienoic acid (OPDA) in wet tubers. After incubation in wet conditions, the tubers produced fewer stems and more roots compared to controls incubated in dry conditions.ConclusionsIn wet conditions, tubers invest in ROS protection and defense against the abiotic stress caused by reduced oxygen due to excessive water. Changes in ABA, SA and IAA that are antagonistic to jasmonates affect growth and defenses, causing induction of root growth and rendering tubers susceptible to necrotrophic pathogens. Water on the tuber surface may function as a signal for growth, similar to germination of seeds.
Project description:BackgroundSucrose transporters (SUTs) mediate sucrose phloem loading in source tissue and sucrose unloading into sink tissue in potatoes and higher plants, thus playing a crucial role in plant growth and development. In potatoes, the physiological function of the sucrose transporters StSUT1 and StSUT4 has been clarified, whereas the physiological role of StSUT2 is not yet fully understood.Methods and resultsThis study analyzed the relative expression of StSUT2 compared to that of StSUT1 and StSUT4 in different tissues from potatoes and its impact on different physiological characteristics by using StSUT2-RNA interference lines. Here, we report a negative effect of StSUT2-RNA interference on plant height, fresh weight, internodes number, leaf area, flowering time, and tuber yield. However, our data indicate that StSUT2 is not involved in carbohydrate accumulation in potato leaves and tubers. In addition, the data of the RNA-seq between the StSUT2-RNA interference line and WT showed that 152 genes were differentially expressed, of which 128 genes were upregulated and 24 genes were downregulated, and the GO and KEGG analyses revealed that differentially expressed genes were mainly related to cell wall composition metabolism.ConclusionsThus, StSUT2 functions in potato plant growth, flowering time, and tuber yield without affecting carbohydrate accumulation in the leaves and tubers but may be involved in cell wall composition metabolism.
Project description:Phytochelatins mediate tolerance to heavy metals in plants and some fungi by sequestering phytochelatin-metal complexes into vacuoles. To date, only Schizosaccharomyces pombe Hmt1 has been described as a phytochelatin transporter and attempts to identify orthologous phytochelatin transporters in plants and other organisms have failed. Furthermore, recent data indicate that the hmt1 mutant accumulates significant phytochelatin levels in vacuoles, suggesting that unidentified phytochelatin transporters exist in fungi. Here, we show that deletion of all vacuolar ABC transporters abolishes phytochelatin accumulation in S. pombe vacuoles and abrogates (35)S-PC(2) uptake into S. pombe microsomal vesicles. Systematic analysis of the entire S. pombe ABC transporter family identified Abc2 as a full-size ABC transporter (ABCC-type) that mediates phytochelatin transport into vacuoles. The S. pombe abc1 abc2 abc3 abc4 hmt1 quintuple and abc2 hmt1 double mutant show no detectable phytochelatins in vacuoles. Abc2 expression restores phytochelatin accumulation into vacuoles and suppresses the cadmium sensitivity of the abc quintuple mutant. A novel, unexpected, function of Hmt1 in GS-conjugate transport is also shown. In contrast to Hmt1, Abc2 orthologs are widely distributed among kingdoms and are proposed as the long-sought vacuolar phytochelatin transporters in plants and other organisms.