Unknown

Dataset Information

0

TBX3 promotes the epithelial mesenchymal transition of cervical cancer by upregulating ID1.


ABSTRACT: In this study, we aim to investigate the role and mechanism of T-box transcription factor 3 (TBX3) in cervical cancer. The mRNA and protein expression of TBX3, inhibitor of DNA binding 1 (ID1), and epithelial mesenchymal transition (EMT) markers (E-Cadherin, N-Cadherin, and vimentin) were measured using qRT-PCR and Western blot. shTBX3 and shID1 were transfected into SiHa cells to knockdown TBX3 and ID1. The metastasis and invasion abilities of cervical cancer cells were determined using a wound healing assay and an invasive assay. The shTBX3- and shID1-transfected SiHa cells were injected into nude mice using a xenograft tumor growth model. We found that TBX3 and ID1 were highly expressed in cervical cancer cells. Importantly, silencing TBX3 and ID1 significantly reduced the migration and metastasis of cervical cancer cells. In addition, silencing TBX3 and ID1 significantly inhibited the EMT, evidenced by the increased E-cadherin, and decreased N-cadherin and vimentin. The size and weight of the xenograft tumor were significantly reduced by shTBX3 and shID1. We demonstrate that TBX3 or ID1 knockdown can effectively inhibit cervical cancer cells migration and invasion. These findings indicate that TBX3 and ID1 can act as potential therapeutic targets for the prevention and treatment of cervical cancer.

SUBMITTER: Yang H 

PROVIDER: S-EPMC10560953 | biostudies-literature | 2023

REPOSITORIES: biostudies-literature

altmetric image

Publications

TBX3 promotes the epithelial mesenchymal transition of cervical cancer by upregulating ID1.

Yang Hongyu H   Sun Yanan Y   Jia Xiaopeng X   Cai Yuru Y   Zhao Xingnan X   Li Nan N  

American journal of cancer research 20230915 9


In this study, we aim to investigate the role and mechanism of T-box transcription factor 3 (TBX3) in cervical cancer. The mRNA and protein expression of TBX3, inhibitor of DNA binding 1 (ID1), and epithelial mesenchymal transition (EMT) markers (E-Cadherin, N-Cadherin, and vimentin) were measured using qRT-PCR and Western blot. shTBX3 and shID1 were transfected into SiHa cells to knockdown TBX3 and ID1. The metastasis and invasion abilities of cervical cancer cells were determined using a wound  ...[more]

Similar Datasets

| S-EPMC8410987 | biostudies-literature
| S-EPMC3608585 | biostudies-literature
| S-EPMC11747012 | biostudies-literature
| S-EPMC6567799 | biostudies-literature
| S-EPMC7074379 | biostudies-literature
| S-EPMC4090741 | biostudies-literature
| S-EPMC3891470 | biostudies-literature
| S-EPMC10768447 | biostudies-literature
| S-EPMC4981407 | biostudies-literature
| S-EPMC9308866 | biostudies-literature