Unknown

Dataset Information

0

Dental pulp stem cells accelerate wound healing through CCL2-induced M2 macrophages polarization.


ABSTRACT: The crosstalk between mesenchymal stem cells (MSCs) and the host immune function plays a key role in the efficiency of tissue regeneration and wound healing. However, the difference in immunological modulation and tissue regeneration function between MSCs from different sources remains unclear. Compared to PDLSCs, BMMSCs, and ADSCs, DPSCs exhibited greater tissue regeneration potential and triggered more M2 macrophages in vivo. DPSCs elicited the polarization of M2a macrophages by conditioned medium and transwell assay and exhibited higher expression levels of C-C motif chemokine ligand 2 (CCL2). Specific blocking of CCL2 could significantly inhibit the DPSCs-induced polarization of M2 macrophages. DPSCs promoted wound healing of the palatal mucosa and M2 macrophages polarization in vivo, which could be significantly impaired by CCL2-neutralized antibody. Our data indicate that DPSCs exert better tissue regeneration potential and immunoregulatory function by secreting CCL2, which can enhance MSCs-mediated tissue regeneration or wound healing.

SUBMITTER: Yang Z 

PROVIDER: S-EPMC10565783 | biostudies-literature | 2023 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dental pulp stem cells accelerate wound healing through CCL2-induced M2 macrophages polarization.

Yang Zi Z   Ma Linsha L   Du Conglin C   Wang Jingsong J   Zhang Chunmei C   Hu Lei L   Wang Songlin S  

iScience 20230924 10


The crosstalk between mesenchymal stem cells (MSCs) and the host immune function plays a key role in the efficiency of tissue regeneration and wound healing. However, the difference in immunological modulation and tissue regeneration function between MSCs from different sources remains unclear. Compared to PDLSCs, BMMSCs, and ADSCs, DPSCs exhibited greater tissue regeneration potential and triggered more M2 macrophages <i>in vivo</i>. DPSCs elicited the polarization of M2a macrophages by conditi  ...[more]

Similar Datasets

| S-EPMC9624276 | biostudies-literature
| S-EPMC6276096 | biostudies-literature
| S-EPMC3114043 | biostudies-literature
| S-EPMC10508428 | biostudies-literature
| S-EPMC9662140 | biostudies-literature
| S-EPMC5531092 | biostudies-literature
| S-EPMC10846410 | biostudies-literature
| S-EPMC6413292 | biostudies-literature
| S-EPMC2774055 | biostudies-literature
| S-EPMC8716137 | biostudies-literature