Unknown

Dataset Information

0

Natural variability in bee brain size and symmetry revealed by micro-CT imaging and deep learning.


ABSTRACT: Analysing large numbers of brain samples can reveal minor, but statistically and biologically relevant variations in brain morphology that provide critical insights into animal behaviour, ecology and evolution. So far, however, such analyses have required extensive manual effort, which considerably limits the scope for comparative research. Here we used micro-CT imaging and deep learning to perform automated analyses of 3D image data from 187 honey bee and bumblebee brains. We revealed strong inter-individual variations in total brain size that are consistent across colonies and species, and may underpin behavioural variability central to complex social organisations. In addition, the bumblebee dataset showed a significant level of lateralization in optic and antennal lobes, providing a potential explanation for reported variations in visual and olfactory learning. Our fast, robust and user-friendly approach holds considerable promises for carrying out large-scale quantitative neuroanatomical comparisons across a wider range of animals. Ultimately, this will help address fundamental unresolved questions related to the evolution of animal brains and cognition.

SUBMITTER: Losel PD 

PROVIDER: S-EPMC10569549 | biostudies-literature | 2023 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Natural variability in bee brain size and symmetry revealed by micro-CT imaging and deep learning.

Lösel Philipp D PD   Monchanin Coline C   Lebrun Renaud R   Jayme Alejandra A   Relle Jacob J JJ   Devaud Jean-Marc JM   Heuveline Vincent V   Lihoreau Mathieu M  

PLoS computational biology 20231002 10


Analysing large numbers of brain samples can reveal minor, but statistically and biologically relevant variations in brain morphology that provide critical insights into animal behaviour, ecology and evolution. So far, however, such analyses have required extensive manual effort, which considerably limits the scope for comparative research. Here we used micro-CT imaging and deep learning to perform automated analyses of 3D image data from 187 honey bee and bumblebee brains. We revealed strong in  ...[more]

Similar Datasets

| S-EPMC3217983 | biostudies-literature
| S-EPMC7843631 | biostudies-literature
| S-EPMC5897013 | biostudies-literature
| S-EPMC3416878 | biostudies-other
| S-EPMC3483640 | biostudies-literature
| S-EPMC8810936 | biostudies-literature
| S-EPMC5997119 | biostudies-literature
| S-EPMC5904145 | biostudies-literature
| S-BSST121 | bioimages
| S-EPMC3920056 | biostudies-literature