Project description:The measurement of gene expression can provide important information about gene function and the molecular basis for developmental processes. We analyzed the transcriptomes at three different developmental stages of pepper flower [sporogenous cell division, stage (B1); pollen mother cell meiosis, stage (B2); and open flower (B3)]. In the cDNA libraries for B1, B2, and B3: 82718, 77061, and 91491 unigenes were assembled, respectively. A total of 34,445 unigene sequences and 128 pathways were annotated by KEGG pathway analysis. Several genes associated with nectar biosynthesis and nectary development were identified, and 8,955, 12,182, and 23,667 DEGs were identified in the B2 vs B1, B3 vs B1, and B3 vs. B2 comparisons. DEGs were involved in various metabolic processes, including flower development, nectar biosynthesis, and nectary development. According to the RNA-seq data, all 13 selected DEGs showed similar expression patterns after q-PCR analysis. Sucrose-phosphatase, galactinol-sucrose galactosyltransferase, and sucrose synthase played very important roles in nectar biosynthesis, and CRABS CLAW could potentially be involved in mediating nectary development. A significant number of simple sequence repeat and single nucleotide polymorphism markers were predicted in the Capsicum annuum sequences. The new results provide valuable genetic information about flower development in pepper.
Project description:The Capsicum genus (Pepper) is a part of the Solanacae family. It has been important in many cultures worldwide for its key nutritional components and uses as spices, medicines, ornamentals and vegetables. Worldwide population growth is associated with demand for more nutritionally valuable vegetables while contending with decreasing resources and available land. These conditions require increased efficiency in pepper breeding to deal with these imminent challenges. Through resequencing of inbred lines we have completed a valuable haplotype map (HapMap) for the pepper genome based on single-nucleotide polymorphisms (SNP). The identified SNPs were annotated and classified based on their gene annotation in the pepper draft genome sequence and phenotype of the sequenced inbred lines. A selection of one marker per gene model was utilized to create the PepperSNP16K array, which simultaneously genotyped 16 405 SNPs, of which 90.7% were found to be informative. A set of 84 inbred and hybrid lines and a mapping population of 90 interspecific F2 individuals were utilized to validate the array. Diversity analysis of the inbred lines shows a distinct separation of bell versus chile/hot pepper types and separates them into five distinct germplasm groups. The interspecific population created between Tabasco (C. frutescens chile type) and P4 (C. annuum blocky type) produced a linkage map with 5546 markers separated into 1361 bins on twelve 12 linkage groups representing 1392.3 cM. This publically available genotyping platform can be used to rapidly assess a large number of markers in a reproducible high-throughput manner for pepper. As a standardized tool for genetic analyses, the PepperSNP16K can be used worldwide to share findings and analyze QTLs for important traits leading to continued improvement of pepper for consumers. Data and information on the array are available through the Solanaceae Genomics Network.
Project description:Peppers (Capsicum annuum L.) are the most widespread and cultivated species of Solanaceae in subtropical and temperate countries. These vegetables are economically attractive worldwide. Although whole-genome sequences of peppers and genome-editing tools are currently available, the precision editing of peppers is still in its infancy because of the lack of a stable pepper transformation method. Here, we employed three Agrobacterium tumefaciens strains-AGL1, EHA101, and GV3101-to investigate which Agrobacterium strain could be used for pepper transformation. Hot pepper CM334 and bell pepper Dempsey were chosen in this study. Agrobacterium tumefaciens GV3101 induced the highest number of calli in cv. Dempsey. All three strains generated similar numbers of calli for cv. CM334. We optimized a suitable concentration of phosphinothricin (PPT) to select a CRISPR/Cas9 binary vector (pBAtC) for both pepper types. Finally, we screened transformed calli for PPT resistance (1 and 5 mg/L PPT for cv. CM334 and Dempsey, respectively). These selected calli showed different indel frequencies from the non-transformed calli. However, the primary indel pattern was consistent with a 1-bp deletion at the target locus of the C. annuumMLO gene (CaMLO2). These results demonstrate the different sensitivity between cv. CM334 and Dempsey to A. tumefaciens-mediated callus induction, and a differential selection pressure of PPT via pBAtC binary vector.
Project description:Pepper (Capsicum annuum L.) is an economically important vegetable crop worldwide. Although many genes associated with anther and pollen development have been identified, little is known about the mechanism of pollen abortion in pepper. Here, we identified and isolated two putative aborted microspore (AMS) isoforms from pepper flowers: CaAMS1 and CaAMS2. Sequence analysis showed that CaAMS2 was generated by retention of the fourth intron in CaAMS1 pre-mRNA. CaAMS1 encodes a putative protein with a basic helix-loop-helix (bHLH) domain belonging to the MYC subfamily of bHLH transcription factors, and it is localized to the nucleus. Truncated CaAMS2-1 and CaAMS2-2 are produced by alternative splicing. Quantitative real-time PCR analysis showed that CaAMS (referred to CaAMS1 and CaAMS2-2) was preferentially expressed in stamens and its expression level gradually decreases with flower development. RNA in situ hybridization analysis showed that CaAMS is strongly expressed in the tapetum at the tetrad and uninucleate stages. Downregulation of CaAMS led to partial shortened filaments, shriveled, indehiscent stamens and abortive pollens in pepper flowers. Several genes involved in pollen exine formation were downregulated in defective CaAMS-silenced anthers. Thus, CaAMS seems to play an important role in pepper tapetum and pollen development by regulating a complex genetic network.
Project description:Pepper (Capsicum annuum L.) is an economically important crop containing capsaicinoids in the seed and placenta, which has various culinary, medical, and industrial applications. Late embryogenesis abundant (LEA) proteins are a large group of hydrophilic proteins participating in the plant stress response and seed development. However, to date there have been no genome-wide analyses of the LEA gene family in pepper. In the present study, 82 LEA genes were identified in the C. annuum genome and classified into nine subfamilies. Most CaLEA genes contain few introns (≤ 2) and are unevenly distributed across 10 chromosomes. Eight pairs of tandem duplication genes and two pairs of segmental duplication genes were identified in the LEA gene family; these duplicated genes were highly conserved and may have performed similar functions during evolution. Expression profile analysis indicated that CaLEA genes exhibited different tissue expression patterns, especially during embryonic development and stress response, particularly in cold stress. Three out of five CaLEA genes showed induced expression upon cold treatment. In summary, we have comprehensively reviewed the LEA gene family in pepper, offering a new perspective on the evolution of this family.
Project description:This study evaluated the types of gene action governing the inheritance of resistance to Phytophthora nicotianae necrosis in populations derived from two crosses involving two susceptible (Beldi and Nabeul II) and one resistant (CM334) cultivars of pepper (Capsicum annuum L.). Populations, composed of Pr, Ps, F(1) , F (2) , BC (1) Pr, and BC (1) Ps generations, were inoculated with six P. nicotianae isolates. Generation means analysis indicated that an additive-dominance model was appropriate for P. nicotianae isolates Pn (Ko1) , Pn (Ko2) and Pn (Kr1) , which showed low aggressiveness in the two crosses. For the more aggressive isolates Pn (Bz1) , Pn (Bz2) and Pn (Kr2) , epistasis was an integral component of resistance in the two crosses. The presence of epistasis in the resistance of pepper to P. nicotianae was dependent on the level of aggressiveness of the isolates. Selection in pepper with less aggressive isolates was efficient, but not with more aggressive isolates; on the other hand, selection with more aggressive isolates was more stable. The minimum number of genes controlling resistance was estimated at up to 2.71. In the majority of cases, the additive variance was significant and greater than the environmental and dominance variance.
Project description:Pepper (Capsicum annuum L.) plants produce berry fruits that are used as spices. Here, we examined the viromes of 15 pepper cultivars through RNA sequencing. We obtained 1,325 virus-associated contigs derived from 8 virus species. Bean broad wilt virus 2 (BBWV2) and cucumber mosaic virus (CMV) were identified as the major viruses infecting pepper plants, followed by potato virus Y, bell pepper endornavirus, and hot pepper endornavirus. The proportion of viral reads in each transcriptome ranged from 0.04% to 24.5%. BBWV2 was the dominant virus in seven cultivars, whereas CMV was dominant in five cultivars. All the bell pepper cultivars showed severe viral disease symptoms, whereas the commercially developed hot pepper cultivars were asymptomatic or had mild symptoms. In addition, 111 complete viral segments were obtained from 7 viruses. Based on the obtained viral genomes, the genetic relationship between the identified viruses and quasispecies of BBWV2 and CMV in each pepper plant was determined. Newly designed primers for nine viruses confirmed the results of RNA sequencing. Taken together, this study, for the first time, provides a comprehensive overview of viromes in 15 major pepper cultivars through RNA sequencing.
Project description:Endornaviruses include viruses that infect fungi, oomycetes, and plants. The genome of plant endornaviruses consists of linear ssRNA ranging in size from approximately 13-18 kb and lacking capsid protein and cell-to-cell movement capability. Although, plant endornaviruses have not been shown to cause detectable changes in the plant phenotype, they have been associated with alterations of the host physiology. Except for the association of cytoplasmic vesicles with infections by Vicia faba endornavirus, effects on the plant cell ultrastructure caused by endornaviruses have not been reported. Bell pepper endornavirus (BPEV) has been identified in several pepper (Capsicum spp.) species. We conducted ultrastructural analyses of cells from two near-isogenic lines of the bell pepper (C. annuum) cv. Marengo, one infected with BPEV and the other BPEV-free, and found cellular alterations associated with BPEV-infections. Some cells of plants infected with BPEV exhibited alterations of organelles and other cell components. Affected cells were located mainly in the mesophyll and phloem tissues. Altered organelles included mitochondrion, chloroplast, and nucleus. The mitochondria from BPEV-infected plants exhibited low number of cristae and electron-lucent regions. Chloroplasts contained plastoglobules and small vesicles in the surrounding cytoplasm. Translucent regions in thylakoids were observed, as well as hypertrophy of the chloroplast structure. Many membranous vesicles were observed in the stroma along the envelope. The nuclei revealed a dilation of the nuclear envelope with vesicles and perinuclear areas. The organelle changes were accompanied by membranous structure rearrangements, such as paramural bodies and multivesicular bodies. These alterations were not observed in cells from plants of the BPEV-free line. Overall, the observed ultrastructural cell alterations associated with BPEV are similar to those caused by plant viruses and viroids and suggest some degree of parasitic interaction between BPEV and the plant host.
Project description:Transcriptome from high throughput sequencing-by-synthesis is a good resource of molecular markers. In this study, we present utility of massively parallel sequencing by synthesis for profiling the transcriptome of red pepper (Capsicum annuum L. TF68) by 454 GS-FLX pyrosequencing. Through the generation of approximately 30.63 megabases (Mb) of Expressed Sequence Tags (ESTs) data with the average length of 375 base pairs (bp), 9,818 contigs and 23,712 singletons were obtained by assembly. Using BLAST alignment against NCBI non-redundant and a UniProt protein database, 30% of the tentative consensus sequences were assigned to specific function annotation, while 24% returned alignments of unknown function, leaving up to 46% with no alignment. Functional classification using FunCat revealed that sequences with putative known function were distributed cross 18 categories. Furthermore, over 200 high quality single nucleotide discrepancies were discovered using the Bukang cDNA collection as a reference database. Moreover, 758 simple sequence repeat (SSR) motif loci were mined from over 600 contigs, from which 572 primer sets were designed. The SSR motifs corresponded to di- and tri- nucleotide motifs (27.03 and 61.92%, respectively). These molecular markers may be of great value for application in linkage mapping and association mapping research.
Project description:RNA silencing is an evolutionarily conserved mechanism that regulates variety of cellular processes in plants. Argonaute protein (AGO), Dicer-like protein (DCL) and RNA-dependent RNA polymerase (RDR) are critical components of RNA silencing. These efficient and indispensable components of the RNAi pathway have not been identified and characterized in pepper. In this study, we identified 12 CaAGO, 4 CaDCL and 6 CaRDR genes in pepper and compared them with those of Arabidopsis, tobacco, potato and tomato. Detailed phylogenetic analyses revealed that each CaAGO, CaDCL and CaRDR protein family were classified into four clades. The tissue specific expression and respond to abiotic or biotic stress were studied. The real-time quantitative polymerase chain reaction (PCR) results demonstrated that CaAGO2, CaAGO10b, CaDCL2 and CaDCL4 were upregulated with cucumber mosaic virus (CMV), potato virus Y (PVY) and tobacco mosaic virus (TMV) infections, whereas they showed difference expression patterns in response to abiotic stress. In addition, we found that many of the candidate genes were induced by phytohormones and H₂O₂ treatment. Our results provide useful information for further elucidation of gene silencing pathways and RNAi-mediated host immunity in pepper.