Project description:Semiconductors in their optical-fiber forms are desirable. Single-crystal organometallic halide perovskites have attractive optoelectronic properties and therefore are suitable fiber-optic platforms. However, single-crystal organometallic perovskite optical fibers have not been reported before due to the challenge of one-directional single-crystal growth in solution. Here, we report a solution-processed approach to continuously grow single-crystal organometallic perovskite optical fibers with controllable diameters and lengths. For single-crystal MAPbBr3 (MA = CH3NH3+) perovskite optical fiber made using our method, it demonstrates low transmission losses (<0.7 dB/cm), mechanical flexibilities (a bending radius down to 3.5 mm), and mechanical deformation-tunable photoluminescence in organometallic perovskites. Moreover, the light confinement provided by our organometallic perovskite optical fibers leads to three-photon absorption (3PA), in contrast with 2PA in bulk single crystals under the same experimental conditions. The single-crystal organometallic perovskite optical fibers have the potential in future optoelectronic applications.
Project description:The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.
Project description:We developed a new concept of X- and γ-ray radiation semiconductor detectors based on a large area graphene/semi-insulating single crystal CdTe Schottky-type heterojunction. These two terminal electronic devices can be easily fabricated by forming a Van der Waals contact between large area chemical vapor deposited graphene and CdTe substrates in air and at room temperature. This approach significantly reduces the fabrication cost and improves the reproducibility and stability of electrical properties. A detailed analysis of their AC and DC electrical properties was carried out in order to determine the width of the space charge region and dominant charge transport mechanisms at reverse bias. The unoptimized graphene/CdTe heterojunction detectors exhibited a promising spectral resolution of 241Am (59 keV) and 137Cs (662 keV) isotope radiation at room temperature.
Project description:To evaluate the feasibility of measuring differences in bulk composition among carbonaceous meteorite parent bodies from an asteroid or comet orbiter, we present the results of a performance simulation of an orbital gamma-ray spectroscopy (GRS) experiment in a Dawn-like orbit around spherical model asteroids with a range of carbonaceous compositions. The orbital altitude was held equal to the asteroid radius for 4.5 months. Both the asteroid gamma-ray spectrum and the spacecraft background flux were calculated using the MCNPX Monte-Carlo code. GRS is sensitive to depths below the optical surface (to ≈20-50 cm depth depending on material density). This technique can therefore measure underlying compositions beneath a sulfur-depleted (e.g., Nittler et al. 2001) or desiccated surface layer. We find that 3σ uncertainties of under 1 wt% are achievable for H, C, O, Si, S, Fe, and Cl for five carbonaceous meteorite compositions using the heritage Mars Odyssey GRS design in a spacecraft-deck-mounted configuration at the Odyssey end-of-mission energy resolution, FWHM = 5.7 keV at 1332 keV. The calculated compositional uncertainties are smaller than the compositional differences between carbonaceous chondrite subclasses.
Project description:The fields of photovoltaics, photodetection and light emission have seen tremendous activity in recent years with the advent of hybrid organic-inorganic perovskites. Yet, there have been far fewer reports of perovskite-based field-effect transistors. The lateral and interfacial transport requirements of transistors make them particularly vulnerable to surface contamination and defects rife in polycrystalline films and bulk single crystals. Here, we demonstrate a spatially-confined inverse temperature crystallization strategy which synthesizes micrometre-thin single crystals of methylammonium lead halide perovskites MAPbX3 (X = Cl, Br, I) with sub-nanometer surface roughness and very low surface contamination. These benefit the integration of MAPbX3 crystals into ambipolar transistors and yield record, room-temperature field-effect mobility up to 4.7 and 1.5 cm2 V-1 s-1 in p and n channel devices respectively, with 104 to 105 on-off ratio and low turn-on voltages. This work paves the way for integrating hybrid perovskite crystals into printed, flexible and transparent electronics.
Project description:Silicon has been considered to be one of the most promising anode active materials for next-generation lithium-ion batteries due to its large theoretical capacity (4200 mA h g-1, Li22Si5). However, silicon anodes suffer from degradation due to large volume expansion and contraction. To control the ideal particle morphology, an experimental method is required to analyze anisotropic diffusion and surface reaction phenomena. This study investigates the anisotropy of the silicon-lithium alloying reaction using electrochemical measurements and Si K-edge X-ray absorption spectroscopy on silicon single crystals. During the electrochemical reduction process in lithium-ion battery systems, the continuous formation of solid electrolyte interphase (SEI) films prevents the achievement of steady-state conditions. Instead, the physical contact between silicon single crystals and lithium metals can prevent the effect of SEI formation. The apparent diffusion coefficient and the surface reaction coefficient are determined from the progress of the alloying reaction analyzed by X-ray absorption spectroscopy. While the apparent diffusion coefficients show no clear anisotropy, the apparent surface reaction coefficient of Si (100) is more significant than that of Si (111). This finding indicates that the surface reaction of silicon governs the anisotropy of practical lithium alloying reaction for silicon anodes.
Project description:X-ray Absorption Spectroscopy (XAS) is a widely used X-ray diagnostic method for studying electronic and structural properties of matter. At first glance, the relatively narrow bandwidth and the highly fluctuating spectral structure of X-ray Free Electron Lasers (XFEL) sources seem to require accumulation over many shots to achieve high data quality. To date the best approach to implementing XAS at XFEL facilities has been using monochromators to scan the photon energy across the desired spectral range. While this is possible for easily reproducible samples such as liquids, it is incompatible with many important systems. Here, we demonstrate collection of single-shot XAS spectra over 10s of eV using an XFEL source, with error bars of only a few percent. We additionally show how to extend this technique over wider spectral ranges towards Extended X-ray Absorption Fine Structure measurements, by concatenating a few tens of single-shot measurements. Our results pave the way for future XAS studies at XFELs, in particular those in the femtosecond regime. This advance is envisioned to be especially important for many transient processes that can only be initiated at lower repetition rates, for difficult to reproduce excitation conditions, or for rare samples, such as those encountered in high-energy density physics.
Project description:Solar cells employing hybrid perovskites have proven to be a serious contender versus established thin-film photovoltaic technologies. Typically, current photovoltaic devices are built up layer by layer from a transparent substrate (bottom-up approach), while the deposition of the perovskite layer itself comes with many challenges including the control of crystal size, nucleation density and growth rate. On the other hand, single crystals have been used with great success for studying the fundamental properties of this new class of optoelectronic materials. However, optoelectronic devices fabricated from single crystals often employ different materials than in their thin film counterparts. Here, we demonstrate various top-down approaches for low-temperature processed organic-inorganic metal halide perovskite single crystal devices. Our approach uses common and well-established material combinations that are often used in polycrystalline thin film devices. The use of a polymer bezel allows easier processing of small crystals and the fabrication of solution-processed, free-standing perovskite single crystal devices. All in all these approaches can supplement other measurements of more fundamental material properties often requiring perovskite single crystals by rendering a photovoltaic characterization possible on the very same crystal with comparable material combinations as in thin film devices.
Project description:Ag-exchanged zeolites are known to have improved sorption and catalytic properties compared to the raw natural material. The application range of Ag-exchanged zeolites is linked to the stability of the exchanged form and its structural evolution at high temperatures. In this study, we investigated the thermal stability of a Ag-exchanged zeolite with an LEV framework type. The dehydration path was monitored in situ by single-crystal X-ray diffraction (SC-XRD) and X-ray absorption fine structure spectroscopy (XAFS). The experimental data were compared with those extrapolated from molecular dynamics (MD) trajectories. Our results showed that Ag-exchanged levyne (Ag-LEV) follows a different dehydration path compared to that of the natural levyne (Ca-LEV). Between 25 and 350 °C, the unit cell volume contraction was -4% with respect to that measured at room temperature. Upon dehydration, Ag-LEV transformed to the LEV B topology: such transformation is accompanied by the change from R 3̅ m to R 3m space group and by the onset of the rupture of one T-O-T connection at 250 °C. Differently from Ca-LEV, no additional change to LEV B' configuration was detected. XAFS analysis indicated that each Ag is approximately surrounded by four oxygen atoms between 2.15 and 2.40 Å. This local environment was maintained up to 650 °C. Weak Ag+1-Ag+1 interactions, detected in the whole investigated temperature range, are mainly ascribed to the presence of Ag-erionite (Ag-ERI) intergrown with Ag-LEV. No reduction to elemental Ag0 occurred upon heating.
Project description:Lead halide perovskites have recently emerged as promising X/γ-ray scintillators. However, the small Stokes shift of exciton luminescence in perovskite scintillators creates problems for the light extraction efficiency and severely impedes their applications in hard X/γ-ray detection. Dopants have been used to shift the emission wavelength, but the radioluminescence lifetime has also been unwantedly extended. Herein, we demonstrate the intrinsic strain in 2D perovskite crystals as a general phenomenon, which could be utilized as self-wavelength shifting to reduce the self-absorption effect without sacrificing the radiation response speed. Furthermore, we successfully demonstrated the first imaging reconstruction by perovskites for application of positron emission tomography. The coincidence time resolution for the optimized perovskite single crystals (4 × 4 × 0.8 mm3) reached 119 ± 3 ps. This work provides a new paradigm for suppressing the self-absorption effect in scintillators and may facilitate the application of perovskite scintillators in practical hard X/γ-ray detections.