Ontology highlight
ABSTRACT: Introduction
Mutations in INPP5D, which encodes for the SH2-domain-containing inositol phosphatase SHIP-1, have recently been linked to an increased risk of developing late-onset Alzheimer's disease. While INPP5D expression is almost exclusively restricted to microglia in the brain, little is known regarding how SHIP-1 affects neurobiology or neurodegenerative disease pathogenesis.Methods
We generated and investigated 5xFAD Inpp5dfl/fl Cx3cr1Ert2Cre mice to ascertain the function of microglial SHIP-1 signaling in response to amyloid beta (Aβ)-mediated pathology.Results
SHIP-1 deletion in microglia led to substantially enhanced recruitment of microglia to Aβ plaques, altered microglial gene expression, and marked improvements in neuronal health. Further, SHIP-1 loss enhanced microglial plaque containment and Aβ engulfment when compared to microglia from Cre-negative 5xFAD Inpp5dfl/fl littermate controls.Discussion
These results define SHIP-1 as a pivotal regulator of microglial responses during Aβ-driven neurological disease and suggest that targeting SHIP-1 may offer a promising strategy to treat Alzheimer's disease.Highlights
Inpp5d deficiency in microglia increases plaque-associated microglia numbers. Loss of Inpp5d induces activation and phagocytosis transcriptional pathways. Plaque encapsulation and engulfment by microglia are enhanced with Inpp5d deletion. Genetic ablation of Inpp5d protects against plaque-induced neuronal dystrophy.
SUBMITTER: Samuels JD
PROVIDER: S-EPMC10576836 | biostudies-literature | 2023 Nov
REPOSITORIES: biostudies-literature
Samuels Joshua D JD Moore Katelyn A KA Ennerfelt Hannah E HE Johnson Alexis M AM Walsh Adeline E AE Price Richard J RJ Lukens John R JR
Alzheimer's & dementia : the journal of the Alzheimer's Association 20230415 11
<h4>Introduction</h4>Mutations in INPP5D, which encodes for the SH2-domain-containing inositol phosphatase SHIP-1, have recently been linked to an increased risk of developing late-onset Alzheimer's disease. While INPP5D expression is almost exclusively restricted to microglia in the brain, little is known regarding how SHIP-1 affects neurobiology or neurodegenerative disease pathogenesis.<h4>Methods</h4>We generated and investigated 5xFAD Inpp5d<sup>fl/fl</sup> Cx3cr1<sup>Ert2Cre</sup> mice to ...[more]