Project description:Mutations associated with fluoroquinolone resistance in clinical isolates of Proteus mirabilis were determined by genetic analysis of the quinolone resistance-determining region (QRDR) of gyrA, gyrB, parC, and parE. This study included the P. mirabilis type strain ATCC 29906 and 29 clinical isolates with reduced susceptibility (MIC, 0.5 to 2 microg/ml) or resistance (MIC, > or =4 microg/ml) to ciprofloxacin. Susceptibility profiles for ciprofloxacin, clinafloxacin, gatifloxacin, gemifloxacin, levofloxacin, moxifloxacin, and trovafloxacin were correlated with amino acid changes in the QRDRs. Decreased susceptibility and resistance were associated with double mutations involving both gyrA (S83R or -I) and parC (S80R or -I). Among these double mutants, MICs of ciprofloxacin varied from 1 to 16 microg/ml, indicating that additional factors, such as drug efflux or porin changes, also contribute to the level of resistance. For ParE, a single conservative change of V364I was detected in seven strains. An unexpected result was the association of gyrB mutations with high-level resistance to fluoroquinolones in 12 of 20 ciprofloxacin-resistant isolates. Changes in GyrB included S464Y (six isolates), S464F (three isolates), and E466D (two isolates). A three-nucleotide insertion, resulting in an additional lysine residue between K455 and A456, was detected in gyrB of one strain. Unlike any other bacterial species analyzed to date, mutation of gyrB appears to be a frequent event in the acquisition of fluoroquinolone resistance among clinical isolates of P. mirabilis.
Project description:To characterize mechanisms of resistance to fluoroquinolones by Mycobacterium tuberculosis, mutants of strain H37Ra were selected in vitro with ofloxacin. Their quinolone resistance-determining regions for gyrA and gyrB were amplified and sequenced to identify mutations in gyrase A or B. Three types of mutants were obtained: (i) one mutant (TKp1) had no mutations in gyrA or gyrB; (ii) mutants that had single missense mutations in gyrA, and (iii) mutants that had two missense mutations resulting in either two altered gyrase A residues or an altered residue in both gyrases A and B. The TKp1 mutant had slightly reduced levels of uptake of [14C]norfloxacin, which was associated with two- to fourfold increases in the MICs of ofloxacin, ciprofloxacin, and sparfloxacin. Gyrase mutations caused a much greater increase in the MICs of fluoroquinolones. For mutants with single gyrA mutations, the increases in the MICs were 4- to 16-fold, and for mutants with double gyrase mutations, the MICs were increased 32-fold or more compared with those for the parent. A gyrA mutation in TKp1 secondary mutants was associated with 32- to 128-fold increases in the MICs of ofloxacin and ciprofloxacin compared with the MICs for H37Ra and an eight-fold increase in the MIC of sparfloxacin. Sparfloxacin was the most active fluoroquinolone tested. No sparfloxacin-resistant single-step mutants were selected at concentrations of > 2.5 micrograms/ml, and high-level resistance (i.e., MIC, > and = 5 micrograms/ml) was associated with two gyrase mutations. Mutations in gyrB and possibly altered levels of intracellular accumulation of drug are two additional mechanisms that may be used by M. tuberculosis in the development of fluoroquinolone resistance. Because sparfloxacin is more active in vitro and selection of resistance appears to be less likely to occur, it may have important advantage over ofloxacin or ciprofloxacin for the treatment of tuberculosis.
Project description:ObjectiveTo investigate the prevalence and mechanisms of fluoroquinolone resistance in Shigella species isolated in Bangladesh and to compare with similar strains isolated in China.MethodsA total of 3789 Shigella isolates collected from Clinical Microbiology Laboratory of icddr,b, during 2004-2010 were analyzed for antibiotic susceptibility. Analysis of plasmids, plasmid-mediated quinolone-resistance genes, PFGE, and sequencing of genes of the quinolone-resistance-determining regions (QRDR) were conducted in representative strains isolated in Bangladesh and compared with strains isolated in Zhengding, China. In addition, the role of efflux-pump was studied by using the efflux-pump inhibitor carbonyl cyanide-m-chlorophenylhydrazone (CCCP).ResultsResistance to ciprofloxacin in Shigella species increased from 0% in 2004 to 44% in 2010 and S. flexneri was the predominant species. Of Shigella spp, ciprofloxacin resistant (CipR) strains were mostly found among S. flexneri (8.3%), followed by S. sonnei (1.5%). Within S. flexneri (n = 2181), 14.5% were resistance to ciprofloxacin of which serotype 2a was predominant (96%). MIC of ciprofloxacin, norfloxacin, and ofloxacin were 6-32 mg/L, 8-32 mg/L, and 8-24 mg/L, respectively in S. flexneri 2a isolates. Sequencing of QRDR genes of resistant isolates showed double mutations in gyrA gene (Ser83Leu, Asp87Asn/Gly) and single mutation in parC gene (Ser80Ile). A difference in amino acid substitution at position 87 was found between strains isolated in Bangladesh (Asp87Asn) and China (Asp87Gly) except for one. A novel mutation at position 211 (His→Tyr) in gyrA gene was detected only in the Bangladeshi strains. Susceptibility to ciprofloxacin was increased by the presence of CCCP indicating the involvement of energy dependent active efflux pumps. A single PFGE type was found in isolates from Bangladesh and China suggesting their genetic relatedness.ConclusionsEmergence of fluoroquinolone resistance in Shigella undermines a major challenge in current treatment strategies which needs to be followed up by using empirical therapeutic strategies.
Project description:Mycoplasma hominis mutants were selected stepwise for resistance to ofloxacin and sparfloxacin, and their gyrA, gyrB, parC, and parE quinolone resistance-determining regions were characterized. For ofloxacin, four rounds of selection yielded six first-, six second-, five third-, and two fourth-step mutants. The first-step mutants harbored a single Asp426-->Asn substitution in ParE. GyrA changes (Ser83-->Leu or Trp) were found only from the third round of selection. With sparfloxacin, three rounds of selection generated 4 first-, 7 second-, and 10 third-step mutants. In contrast to ofloxacin resistance, GyrA mutations (Ser83-->Leu or Ser84-->Trp) were detected in the first-step mutants prior to ParC changes (Glu84-->Lys), which appeared only after the second round of selection. Further analysis of eight multistep-selected mutants of M. hominis that were previously described (2) revealed that they carried mutations in ParE (Asp426-->Asn), GyrA (Ser83-->Leu) and ParE (Asp426-->Asn), GyrA (Ser83-->Leu) and ParC (Ser80-->Ile), or ParC (Ser80-->Ile) alone, depending on the fluoroquinolone used for selection, i.e., ciprofloxacin, norfloxacin, ofloxacin, or pefloxacin, respectively. These data indicate that in M. hominis DNA gyrase is the primary target of sparfloxacin whereas topoisomerase IV is the primary target of pefloxacin, ofloxacin, and ciprofloxacin.
Project description:Although bacterial gyrase and topoisomerase IV have critical interactions with positively supercoiled DNA, little is known about the actions of these enzymes on overwound substrates. Therefore, the abilities of Bacillus anthracis and Escherichia coli gyrase and topoisomerase IV to relax and cleave positively supercoiled DNA were analyzed. Gyrase removed positive supercoils ?10-fold more rapidly and more processively than it introduced negative supercoils into relaxed DNA. In time-resolved single-molecule measurements, gyrase relaxed overwound DNA with burst rates of ?100 supercoils per second (average burst size was 6.2 supercoils). Efficient positive supercoil removal required the GyrA-box, which is necessary for DNA wrapping. Topoisomerase IV also was able to distinguish DNA geometry during strand passage and relaxed positively supercoiled substrates ?3-fold faster than negatively supercoiled molecules. Gyrase maintained lower levels of cleavage complexes with positively supercoiled (compared with negatively supercoiled) DNA, whereas topoisomerase IV generated similar levels with both substrates. Results indicate that gyrase is better suited than topoisomerase IV to safely remove positive supercoils that accumulate ahead of replication forks. They also suggest that the wrapping mechanism of gyrase may have evolved to promote rapid removal of positive supercoils, rather than induction of negative supercoils.
Project description:Mycoplasma gallisepticum enrofloxacin-resistant mutants were generated by stepwise selection in increasing concentrations of enrofloxacin. Alterations were found in the quinolone resistance-determining regions of the four target genes encoding DNA gyrase and topoisomerase IV from these mutants. This is the first description of such mutations in an animal mycoplasma species.
Project description:Type IIA topoisomerases catalyze a variety of different reactions: eukaryotic topoisomerase II relaxes DNA in an ATP-dependent reaction, whereas the bacterial representatives gyrase and topoisomerase IV (Topo IV) preferentially introduce negative supercoils into DNA (gyrase) or decatenate DNA (Topo IV). Gyrase and Topo IV perform separate, dedicated tasks during replication: gyrase removes positive supercoils in front, Topo IV removes pre-catenanes behind the replication fork. Despite their well-separated cellular functions, gyrase and Topo IV have an overlapping activity spectrum: gyrase is also able to catalyze DNA decatenation, although less efficiently than Topo IV. The balance between supercoiling and decatenation activities is different for gyrases from different organisms. Both enzymes consist of a conserved topoisomerase core and structurally divergent C-terminal domains (CTDs). Deletion of the entire CTD, mutation of a conserved motif and even by just a single point mutation within the CTD converts gyrase into a Topo IV-like enzyme, implicating the CTDs as the major determinant for function. Here, we summarize the structural and mechanistic features that make a type IIA topoisomerase a gyrase or a Topo IV, and discuss the implications for type IIA topoisomerase evolution.
Project description:The L2 reference strain of Chlamydia trachomatis was exposed to subinhibitory concentrations of ofloxacin (0.5 microg/ml) and sparfloxacin (0.015 microg/ml) to select fluoroquinolone-resistant mutants. In this study, two resistant strains were isolated after four rounds of selection. The C. trachomatis mutants presented with high-level resistance to various fluoroquinolones, particularly to sparfloxacin, for which a 1,000-fold increase in the MICs for the mutant strains compared to the MIC for the susceptible strain was found. The MICs of unrelated antibiotics (doxycycline and erythromycin) for the mutant strains were identical to those for the reference strain. The gyrase (gyrA, gyrB) and topoisomerase IV (parC, parE) genes of the susceptible and resistant strains of C. trachomatis were partially sequenced. A point mutation was found in the gyrA quinolone-resistance-determining region (QRDR) of both resistant strains, leading to a Ser83-->Ile substitution (Escherichia coli numbering) in the corresponding protein. The gyrB, parC, and parE QRDRs of the resistant strains were identical to those of the reference strain. These results suggest that in C. trachomatis, DNA gyrase is the primary target of ofloxacin and sparfloxacin.
Project description:Quinolones that act equally against DNA gyrase and topoisomerase IV are a desirable modality to decrease the selection of resistant strains. We first determined by genetic and biochemical studies in Staphylococcus aureus that the primary target enzyme of WCK-1734, a new quinolone, was DNA gyrase. A single mutation in gyrase, but not topoisomerase IV, caused a two- to fourfold increase in the MIC. Studies with purified topoisomerase IV and gyrase from S. aureus also showed that gyrase was more sensitive than topoisomerase IV to WCK-1734 (50% inhibitory concentration, 1.25 and 2.5 to 5.0 microg/ml, respectively; 50% stimulation of cleavage complex formation, 0.62 and 2.5 to 5.0 microg/ml, respectively). To test the effect of balanced activity of quinolones against the two target enzymes, we measured the frequency of selection of mutants with ciprofloxacin (which targets topoisomerase IV) and WCK-1734 alone and in combination. With the combination of ciprofloxacin and WCK-1734, each at its MIC, the ratio of frequency of mutants selected was significantly lower than that with each drug alone at two times their respective MICs. We further characterized resistant strains selected with the combination of ciprofloxacin and WCK-1734 and found evidence to suggest the existence of novel mutational mechanisms for low-level quinolone resistance. By use of a combination of differentially targeting quinolones, this study provides novel data in direct support of the paradigm for dual targeting of quinolone action and reduced development of resistance.