Project description:A common evolutionary trend in highly selfing plants is the evolution of the "selfing syndrome", in which traits associated with pollinator attraction are lost or greatly reduced. Limited information is available on whether these trait reductions are favored by natural selection or result from reduced purifying selection coupled with genetic drift. This study attempted to distinguish between these two possibilities for the evolutionary loss of floral pigmentation in the highly selfing species Ipomoea lacunosa. This study also tested the hypothesis that loss of floral pigmentation is caused by downregulation or loss of function in a tissue-specific anthocyanin transcription factor, as has been found in other plants. F2 individuals of a cross between white and pigmented individuals revealed segregation at two epistatically acting loci: one affecting pigmentation in both corolla throat and limbs (Anl1) and one affecting limb pigmentation (Anl2). Individuals that are homozygous for the "white" allele at Anl1 have white throats and limbs regardless of genotype at Anl2. In individuals with pigmented throats, homozygosity of the "white" allele at Anl2 produces white limbs. Flower color variation at Anl1 cosegregates with an R2R3-Myb anthocyanin transcription factor, which is down-regulated in white-flowers but not in pigmented flowers. Differential expression of the two alleles of this gene indicates that down regulation is caused by a cis-regulatory change. Finally, allele-frequency differences at Anl1 were substantially and significantly greater than differences in allele frequencies at four microsatellite loci. These results are consistent with the hypotheses that the identified R2R3-Myb gene corresponds to Anl1 and that evolutionary loss of pigmentation in I. lacunosa was caused by selection. They are also consistent with previous studies demonstrating that loss of floral pigmentation is usually caused by down-regulation or functional inactivation of an R2R3-Myb gene.
Project description:Three morning glory species in the genus Argyreia Lour., A. lycioides (Choisy) Traiperm & Rattanakrajang, A. mekongensis Gagnep & Courchet, and A. versicolor (Kerr) Staples & Traiperm, were found co-occurring and co-flowering. Argyreia mekongensis and A. versicolor are rare, while A. lycioides is near threatened and distributed throughout Myanmar and Thailand. We investigated key floral characters (floral morphology and phenology, as well as the micromorphology of the floral nectary disc and staminal trichomes) and screened for important chemical compounds hypothesized to contribute to pollinator attraction. Our findings demonstrate that some aspects of floral morphology (e.g., corolla size, limb presence, and floral color) of the three studied congeners exhibit significant differences. Moreover, pollinator composition appears to be influenced by floral shape and size; morning glory species with wider corolla tubes were pollinated by larger bees. The morphology of the floral nectary disc was similar in all species, while variation in staminal trichomes was observed across species. Glandular trichomes were found in all three species, while non-glandular trichomes were found only in A. versicolor. Histochemical results revealed different compounds in the floral nectary and staminal trichomes of each species, which may contribute to both floral attraction and defense. These findings demonstrate some segregation of floral visitors among sympatric co-flowering morning glory species, which appears to be influenced by the macro- and micromorphology of flowers and their chemical compounds. Moreover, understanding the floral morphology and chemical attractants of these sympatric co-flowering Argyreia species may help to maintain their common pollinators in order to conserve these rare and endangered species, especially A. versicolor.
Project description:Mobile element dynamics in seven alleles of the chalcone synthase D locus (CHS-D) of the common morning glory (Ipomoea purpurea) are analyzed in the context of synonymous nucleotide sequence distances for CHS-D exons. By using a nucleotide sequence of CHS-D from the sister species Ipomoea nil (Japanese morning glory [Johzuka-Hisatomi, Y., Hoshino, A., Mori, T., Habu, Y. & Iida, S. (1999) Genes Genet. Syst. 74, 141-147], it is also possible to determine the relative frequency of insertion and loss of elements within the CHS-D locus between these two species. At least four different types of transposable elements exist upstream of the coding region, or within the single intron of the CHS-D locus in I. purpurea. There are three distinct families of miniature inverted-repeat transposable elements (MITES), and some recent transpositions of Activator/Dissociation (Ac/Ds)-like elements (Tip100), of some short interspersed repetitive elements (SINEs), and of an insertion sequence (InsIpCHSD) found in the neighborhood of this locus. The data provide no compelling evidence of the transposition of the mites since the separation of I. nil and I. purpurea roughly 8 million years ago. Finally, it is shown that the number and frequency of mobile elements are highly heterogeneous among different duplicate CHS loci, suggesting that the dynamics observed at CHS-D are locus-specific.
Project description:Fitness costs are frequently invoked to explain the presence of genetic variation underlying plant defense across many types of damaging agents. Despite the expectation that costs of resistance are prevalent, however, they have been difficult to detect in nature. To examine the potential that resistance confers a fitness cost, we examined the survival and fitness of genetic lines of the common morning glory, Ipomoea purpurea, that diverged in the level of resistance to the herbicide glyphosate. We planted a large field experiment and assessed survival following herbicide application as well as fitness of the divergent selection lines in the absence of the herbicide. We found that genetic lines selected for increased resistance exhibited lower death compared to control and susceptible lines in the presence of the herbicide, but no evidence that resistant lines produced fewer seeds in the absence of herbicide. However, susceptible lines produced more viable seeds than resistant or control lines, providing some evidence of a fitness cost in terms of seed germination, and thus potential empirical support for the expectation of trait trade-offs as a consequence of adaptation to novel environments.
Project description:Bacterial community in floral nectar of Nicotiana glauca: The roles of environmental versus spatial factors along climatic gradient and across the globe