Unknown

Dataset Information

0

Large-scale causal discovery using interventional data sheds light on the regulatory network architecture of blood traits.


ABSTRACT: Inference of directed biological networks is an important but notoriously challenging problem. We introduce inverse sparse regression (inspre), an approach to learning causal networks that leverages large-scale intervention-response data. Applied to 788 genes from the genome-wide perturb-seq dataset, inspre helps elucidate the network architecture of blood traits.

SUBMITTER: Brown BC 

PROVIDER: S-EPMC10614812 | biostudies-literature | 2023 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Large-scale causal discovery using interventional data sheds light on the regulatory network architecture of blood traits.

Brown Brielin C BC   Morris John A JA   Lappalainen Tuuli T   Knowles David A DA  

bioRxiv : the preprint server for biology 20231017


Inference of directed biological networks is an important but notoriously challenging problem. We introduce <i>inverse sparse regression (inspre)</i>, an approach to learning causal networks that leverages large-scale intervention-response data. Applied to 788 genes from the genome-wide perturb-seq dataset, <i>inspre</i> helps elucidate the network architecture of blood traits. ...[more]

Similar Datasets

| S-EPMC5066227 | biostudies-literature
| S-EPMC10548411 | biostudies-literature
| S-EPMC3012054 | biostudies-literature
| S-EPMC6242909 | biostudies-literature
| S-EPMC4551732 | biostudies-literature
| S-EPMC8811262 | biostudies-literature
| S-EPMC6908589 | biostudies-literature
| S-EPMC7193309 | biostudies-literature
2011-12-04 | E-GEOD-32587 | biostudies-arrayexpress
2011-12-04 | GSE32587 | GEO