Project description:Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial-interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ(13)C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters.
Project description:During the Last Glacial Maximum (LGM; ~20,000 years ago), the global ocean sequestered a large amount of carbon lost from the atmosphere and terrestrial biosphere. Suppressed CO2 outgassing from the Southern Ocean is the prevailing explanation for this carbon sequestration. By contrast, the North Atlantic Ocean-a major conduit for atmospheric CO2 transport to the ocean interior via the overturning circulation-has received much less attention. Here we demonstrate that North Atlantic carbon pump efficiency during the LGM was almost doubled relative to the Holocene. This is based on a novel proxy approach to estimate air-sea CO2 exchange signals using combined carbonate ion and nutrient reconstructions for multiple sediment cores from the North Atlantic. Our data indicate that in tandem with Southern Ocean processes, enhanced North Atlantic CO2 absorption contributed to lowering ice-age atmospheric CO2.
Project description:Subtropical gyre (STG) depth and strength are controlled by wind stress curl and surface buoyancy forcing1,2. Modern hydrographic data reveal that the STG extends to a depth of about 1 km in the Northwest Atlantic, with its maximum depth defined by the base of the subtropical thermocline. Despite the likelihood of greater wind stress curl and surface buoyancy loss during the Last Glacial Maximum (LGM)3, previous work suggests minimal change in the depth of the glacial STG4. Here we show a sharp glacial water mass boundary between 33° N and 36° N extending down to between 2.0 and 2.5 km-approximately 1 km deeper than today. Our findings arise from benthic foraminiferal δ18O profiles from sediment cores in two depth transects at Cape Hatteras (36-39° N) and Blake Outer Ridge (29-34° N) in the Northwest Atlantic. This result suggests that the STG, including the Gulf Stream, was deeper and stronger during the LGM than at present, which we attribute to increased glacial wind stress curl, as supported by climate model simulations, as well as greater glacial production of denser subtropical mode waters (STMWs). Our data suggest (1) that subtropical waters probably contributed to the geochemical signature of what is conventionally identified as Glacial North Atlantic Intermediate Water (GNAIW)5-7 and (2) the STG helped sustain continued buoyancy loss, water mass conversion and northwards meridional heat transport (MHT) in the glacial North Atlantic.
Project description:The European Alps are an effective barrier for meridional moisture transport and are thus uniquely placed to record shifts in the North Atlantic storm track pattern associated with the waxing and waning of Late-Pleistocene Northern Hemisphere ice sheets. The lack of well-dated terrestrial proxy records spanning this time period, however, renders the reconstruction of past atmospheric patterns difficult. Here we present a precisely dated, continuous terrestrial record of meteoric precipitation in Europe between 30 and 14.7 ka. In contrast to present-day conditions, our speleothem data provide strong evidence for preferential advection of moisture from the South across the Alps supporting a southward shift of the storm track during the local Last Glacial Maximum (that is, 26.5-23.5 ka). Moreover, our age control indicates that this circulation pattern preceded the Northern Hemisphere precession maximum by ~3 ka, suggesting that obliquity may have played a considerable role in the Alpine ice aggradation.
Project description:Centennial-scale mineral dust peaks in last glacial Greenland ice cores match the timing of lowest Greenland temperatures, yet little is known of equivalent changes in dust-emitting regions, limiting our understanding of dust-climate interaction. Here, we present the most detailed and precise age model for European loess dust deposits to date, based on 125 accelerator mass spectrometry 14C ages from Dunaszekcső, Hungary. The record shows that variations in glacial dust deposition variability on centennial-millennial timescales in east central Europe and Greenland were synchronous within uncertainty. We suggest that precipitation and atmospheric circulation changes were likely the major influences on European glacial dust activity and propose that European dust emissions were modulated by dominant phases of the North Atlantic Oscillation, which had a major influence on vegetation and local climate of European dust source regions.
Project description:The spread of C4 grasses in the late Neogene is one of the most important ecological transitions of the Cenozoic, but the primary driver of this global expansion is widely debated. We use the stable carbon isotopic composition (δ(13)C) of bison and mammoth tissues as a proxy for the relative abundance of C3 and C4 vegetation in their grazing habitat to determine climatic and atmospheric CO2 controls on C4 grass distributions from the Last Glacial Maximum (LGM) to the present. We predict the spatial variability of grass δ(13)C in North America using a mean of three different methods of classification and regression tree (CART) machine learning techniques and nine climatic variables. We show that growing season precipitation and temperature are the strongest predictors of all single climate variables. We apply this CART analysis to high-resolution gridded climate data and Coupled Model Intercomparison Project (CMIP5) mean paleoclimate model outputs to produce predictive isotope landscape models ("isoscapes") for the current, mid-Holocene, and LGM average δ(13)C of grass-dominated areas across North America. From the LGM to the present, C4 grass abundances substantially increased in the Great Plains despite concurrent increases in atmospheric CO2. These results suggest that changes in growing season precipitation rather than atmospheric CO2 were critically important in the Neogene expansion of C4 grasses.
Project description:The subpolar North Atlantic is a key location for the Earth's climate system. In the Labrador Sea, intense winter air-sea heat exchange drives the formation of deep waters and the surface circulation of warm waters around the subpolar gyre. This process therefore has the ability to modulate the oceanic northward heat transport. Recent studies reveal decadal variability in the formation of Labrador Sea Water. Yet, crucially, its longer-term history and links with European climate remain limited. Here we present new decadally resolved marine proxy reconstructions, which suggest weakened Labrador Sea Water formation and gyre strength with similar timing to the centennial cold periods recorded in terrestrial climate archives and historical records over the last 3000 years. These new data support that subpolar North Atlantic circulation changes, likely forced by increased southward flow of Arctic waters, contributed to modulating the climate of Europe with important societal impacts as revealed in European history.
Project description:North-Atlantic records of Schizymenia dubyi extend along the eastern shores of the North Atlantic from Morocco to southern Britain and Ireland, and the species is also recorded from Iceland. A study was undertaken to confirm the identity of the specimens from Iceland that were geographically separate from the main distribution of S. dubyi and in contrast to other species of the genus did not have gland cells. We analyzed rbcL and COI molecular sequence data from Icelandic specimens and compared the results with those for Schizymenia specimens available in GenBank. For both markers, Schizymenia was shown to be a monophyletic genus. The Icelandic specimens were clearly genetically distinct from S. dubyi and formed a well-supported clade with Schizymenia species from the Northern Pacific. Based on these results, we have described a new species, Schizymenia jonssonii, which can be distinguished by molecular phylogeny, its lack of gland cells and by being strictly intertidal. Crustose tetrasporophytes with identical COI and rbcL sequences were found at the same locations as foliose plants. Schizymenia apoda is reported for the first time in the UK, its identity confirmed by rbcL sequence data. In light of these findings, it is likely that by further molecular analysis of the genus Schizymenia in the north-eastern Atlantic and the Mediterranean, a higher diversity of Schizymenia spp. will be discovered in this region.
Project description:Three grinding stones from Shizitan Locality 14 (ca. 23,000-19,500 calendar years before present) in the middle Yellow River region were subjected to usewear and residue analyses to investigate human adaptation during the last glacial maximum (LGM) period, when resources were generally scarce and plant foods may have become increasingly important in the human diet. The results show that these tools were used to process various plants, including Triticeae and Paniceae grasses, Vigna beans, Dioscorea opposita yam, and Trichosanthes kirilowii snakegourd roots. Tubers were important food resources for Paleolithic hunter-gatherers, and Paniceae grasses were exploited about 12,000 y before their domestication. The long tradition of intensive exploitation of certain types of flora helped Paleolithic people understand the properties of these plants, including their medicinal uses, and eventually led to the plants' domestication. This study sheds light on the deep history of the broad spectrum subsistence strategy characteristic of late Pleistocene north China before the origins of agriculture in this region.
Project description:The influence of ocean circulation changes on atmospheric CO2 hinges primarily on the ability to alter the ocean interior's respired nutrient inventory. Here we investigate the Atlantic overturning circulation at the Last Glacial Maximum and its impact on respired carbon storage using radiocarbon and stable carbon isotope data from the Brazil and Iberian Margins. The data demonstrate the existence of a shallow well-ventilated northern-sourced cell overlying a poorly ventilated, predominantly southern-sourced cell at the Last Glacial Maximum. We also find that organic carbon remineralization rates in the deep Atlantic remained broadly similar to modern, but that ventilation ages in the southern-sourced overturning cell were significantly increased. Respired carbon storage in the deep Atlantic was therefore enhanced during the last glacial period, primarily due to an increase in the residence time of carbon in the deep ocean, rather than an increase in biological carbon export.