Unknown

Dataset Information

0

Real-Time Computation of Brain E-Field for Enhanced Transcranial Magnetic Stimulation Neuronavigation and Optimization.


ABSTRACT: Transcranial Magnetic Stimulation (TMS) coil placement and pulse waveform current are often chosen to achieve a specified E-field dose on targeted brain regions. TMS neuronavigation could be improved by including real-time accurate distributions of the E-field dose on the cortex. We introduce a method and develop software for computing brain E-field distributions in real-time enabling easy integration into neuronavigation and with the same accuracy as 1st -order finite element method (FEM) solvers. Initially, a spanning basis set (< 400) of E-fields generated by white noise magnetic currents on a surface separating the head and permissible coil placements are orthogonalized to generate the modes. Subsequently, Reciprocity and Huygens' principles are utilized to compute fields induced by the modes on a surface separating the head and coil by FEM, which are used in conjunction with online (real-time) computed primary fields on the separating surface to evaluate the mode expansion. We conducted a comparative analysis of E-fields computed by FEM and in real-time for eight subjects, utilizing two head model types (SimNIBS's 'headreco' and 'mri2mesh' pipeline), three coil types (circular, double-cone, and Figure-8), and 1000 coil placements (48,000 simulations). The real-time computation for any coil placement is within 4 milliseconds (ms), for 400 modes, and requires less than 4 GB of memory on a GPU. Our solver is capable of computing E-fields within 4 ms, making it a practical approach for integrating E-field information into the neuronavigation systems without imposing a significant overhead on frame generation (20 and 50 frames per second within 50 and 20 ms, respectively).

SUBMITTER: Hasan NI 

PROVIDER: S-EPMC10635016 | biostudies-literature | 2023 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Real-Time Computation of Brain E-Field for Enhanced Transcranial Magnetic Stimulation Neuronavigation and Optimization.

Hasan Nahian I NI   Dannhauer Moritz M   Wang Dezhi D   Deng Zhi-De ZD   Gomez Luis J LJ  

bioRxiv : the preprint server for biology 20231030


Transcranial Magnetic Stimulation (TMS) coil placement and pulse waveform current are often chosen to achieve a specified E-field dose on targeted brain regions. TMS neuronavigation could be improved by including real-time accurate distributions of the E-field dose on the cortex. We introduce a method and develop software for computing brain E-field distributions in real-time enabling easy integration into neuronavigation and with the same accuracy as 1<sup>st</sup> -order finite element method  ...[more]

Similar Datasets

| S-EPMC11685379 | biostudies-literature
| S-EPMC8293904 | biostudies-literature
| S-EPMC10922371 | biostudies-literature
| S-EPMC5929994 | biostudies-literature
| S-EPMC7248312 | biostudies-literature
| S-EPMC11339299 | biostudies-literature
| S-EPMC5893444 | biostudies-literature
| S-EPMC8526891 | biostudies-literature
| S-EPMC7614713 | biostudies-literature
| S-EPMC5876293 | biostudies-literature